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Abstract

A Petrov-Galerkin finite element formulation for first-order hyperbolic

systems is developed generalizing the streamline approach which has been

successfully applied previously to convection-diffusion and incompressible

Navier-Stokes equations. The formulation is shown to possess desirable

stability and accuracy properties.

The algorithm is applied to the Euler equations in conservation-law form

and is shown to be effective in all cases studied, including ones with discon-

tinuous solutions. Accurate and crisp representation of shock fronts in tran-

sonic problems is achieved.
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CHAPTER 1

I nt rodu ct ion

Analysis of inviscid, compressible fluid flows, especially ones with

discontinuities, has been an interesting and challenging part of the research

done in the field of computational fluid dynamics (see [L6]).

Numerous workers in this field have employed finite difference techniques.

The following represents a brief sampling of some recent works. Ballhaus et

al. [B4] used implicit approximate factorization schemes to solve the tran-

sonic small disturbance equation. Holst and Ballhaus [H3] applied approxi-

mate factorization schemes to the full potential equation in conservation

form. Holst and Brown [H4] utilized solution adaptive grids for the full

potential equation in conservation form. Warming and Beam [W3] used approxi-

mate factorization schemes to solve the Euler equations in conservation law

form. Steger [$3], and Steger and Warming [$2] applied flux vector split-

ting ideas to the solution of the Euler equations in conservation form.

Finite difference schemes of the above type are mostly limited to problems

with simple geometries. Finite element methods, on the other hand, can easily

handle arbitrary geometries.

In the finite element method, the problem domain is discretized into

sub-domains (elements), and, via a weighted residual formulation, the governing

differential equation system is translated into a system of ordinary differen-

tial equations.



In a weighted residual formulation, selecting the weighting functions

from the same class that the interpolation functions are selected from,

leads to a (Bubnov) Galerkin formulation. Whenapplied to differential

equation systems with symmetric operators (e.g. diffusion equations, most

structural and solid mechanics problems) Galerkin formulations produce

solutions with a "best approximation" property. That is, the error is mini-

mized with respect to a certain norm.

For systems with non-symmetric operators (e.g. first-order hyperbolic

systems), however, the Galerkin formulation does not possess a best approxima-

tion property. This, in somecases, may result in solutions with spurious

node-to-node oscillations. In fact, this problem is not limited to Galerkin

finite element formulations. It also arises for finite difference schemes

when non-symmetric operators are approximated centrally.

Instead of using weighting functions which lead to a Galerkin formula-

tion, one can employ a Petrov-Galerkin formulation by modifying those weight-

ing functions according to an optimal rule. The basic idea is to minimize

the spurious oscillations without introducing excessive diffusion to the

solution.

An optimal streamline upwind/Petrov-Galerkin formulation for convection

dominated flows was recently developed by Hughes and Brooks (see [B7, B8, HI2,

HI4, HI5]) and was successfully applied to the solution of advection-diffusion

and incompressible Navier-Stokes equations. In this work we present a Petrov-

Galerkin algorithm which is a generalization of the streamline upwind/Petrov-

Galerkin algorithm to hyperbolic systems. The weighting functions (which

would normally lead to a Galerkin formulation) are perturbed by the product



of the coefficient matrix of the hyperbolic system, the gradient of the

weighting function and a time parameter. The alternatives of transposing or

not transposing the coefficient matrix in the weightinq function, and the

selection of the time parameter are amongthe subjects discussed here. The

algorithm presented, under somevery special conditions, reduces to the

Lax-Wendroff scheme, which is known as a shock capturing algorithm. By incor-

porating the coefficient matrix of the hyperbolic system into the weighting

function we automatically inject the eigenvalue/eigenvector information of

the system into our finite element formulation.

In chapter 2 we briefly review the properties of one-dimensional hyper-

bolic systems and introduce the Petrov-Galerkin algorithms. The selection

of the weighting functions is discussed in detail. Wealso investigate under

what circumstances the weighted residual formulation of a system can be re-

duced to that of uncoupled single degree-of-freedom equations. The proce-

dure of finite element discretization, and the transient algorithm used for

solving the semi-discrete equation are described. Further, for a special

case, we write the finite difference equations for the Petrov-Galerkin formu-

lation.

In chapter 3 we perform a detailed stability and accuracy analysis of

algorithms for the linear one-dimensional hyperbolic equation. Several algo-

rithms of interest are studied and compared.

Chapter 4 reports numerical results in one space dimension. Several

linear and nonlinear, steady and transient problems are solved using various

techniques. Special emphasis is placed on problems with discontinuous solu-

tions (shocks).



In chapter 5 we introduce the multi-dimensional versions of the Petrov-

Galerkin algorithms.

Chapter 6 covers numerical applications in two space dimensions. A

biconvex thin airfoil problem is solved for subsonic and transonic cases.

Several algorithms are tested.

In chapter 7, we draw our conclusions and make suggestions for future

research.

Appendix I reviews the properties of the compressible Euler equations.

In appendix II, a stability and accuracy analysis of algorithms for the

one-dimensional, linear parabolic equation is performed. In appendix IIIa

similar analysis for the one-dimensional linear second-order hyperbolic equa-

tion is performed. The methods used in appendices II and III are essentially

the same as that used in chapter 3.



CHAPTER2

One-dimensional Hyperbolic Systems

Let

= [0, L]

the points

x 6 _ and

2.1 Initial/Boundary-value Problem

= ]0,L[ denote the open interval of length

denote its closure. The boundary of _ is

0 and L.

t e [0, T] ,

Consider the following syste_L of

L , and let

F = {0, L}, that is,

Spatial and tem[_oral coordinates are denoted by

respectively.

m partial differential equations:

U + AU + G = 0 (2 1 i)
~,t _~,x ~ ~ " "

where

u = u(x, t) (2.1.2)

A = A(U, x, t) (2.1.3)

G = G(U, x, t) (2.1.4)

and a comma denotes partial differentiation.

We are concerned with the case in which (2.1.1) is hyperbolic, that

is when A has real eigenvalues and there ekists a transformation matrix

S such that

-i
S AS = A

where A is the diagonal matrix of eigenvalues of A .

(2.1.1) is called a balance law if there exists a vector

(2.1.5)

= _(U, x, t) (2.1.6)



such that

A balance law in which

In the linear case

G = 0 is said to be a conservation law.

and

A = A(x, t) (2.1.8)

G = B(x, t)U + /(x, t) (2.1.9)

In the constant-coefficient case A and B are independent of x

and t

Classical references for the study of hyperbolic systems are Courant -

Hilbert [C3] and Courant - Friedrichs [C2].

Consideration of the eigenstructure of A enables the specification

of appropriate boundary conditions. For a general treatment of this topic

see Yee [YI]. For the present purposes, it suffices to assume that the

boundary conditions take the abstract form

U = g(t) (2.1.10)

where _ is a boundary operator and g is a prescribed function.

The initial/boundary-value problem for (2.1.1) consists of finding a

function U which satisfies (2.1.1), the boundary conditions (2.1.10),

and the following initial condition:

u(x, 0) = U0(x) (2.1.11)

where _0 is a given function of x _



2.2 Weighted Residual Formulation

Consider a discretization of _ into element subdomains _e

2 ,..., nez , where nel is the number of elements, we assume

, e = 1 ,

ne

e=l

(2.2.1)

ne_

= _ _e

e=l

(2.2.2)

All functions considered in the finite element formulation will be smooth

on the element interiors (i.e. _e's). Two classes of functions are impor-

tant in the developments which follow. The classes are distinguished by

their continuity properties across the element boundaries.

Functions of the first class are assumed to be continuous across

element boundaries. These functions are denoted by C O = C0(_) and may

be recognized as containing the standard finite element interpolations.

Functions of the second class are allowed to be discontinuous across

element boundaries and are denoted by C -I = C-I(_).

A weighted residual formulation of (2.1.1) is given by

P

0 = ] W • (U + AU + G)d_
~ -,t ~~,x ~

(2.2.3)

where W is a weighting function and • denotes the dot product. In all

cases we assume U is approximated by standard,
~

C O finite element
#

interpolations. The weighting functions may be selected from a different

set of functions than the trial solutions. Thus (2.2.3) gives rise to a

Petrov-Galerkin formulation (see e.g. [B1, B7, B8, CI, DI, H1, H8, HI2, HI4

HI5, M2, RI, WI]).



An important class of Petrov-Galerkin methods, which is emphasized in

the sequel, is defined by the following expression for W :

= W + T W (2.2.4)

where W is a memberof the sameclass of functions as the trial solutions

and T lis either TA or TAT where T is a parameter which is chosen

to optimize accuracy according to somecriterion. This class of methods

represents a generalization to hyperbolic systems of the streamline-upwind/

Petrov-Galerkin formulation which has been successfully applied heretofore

to the advection-diffion and incompressible Navier-Stokes equations [B7, B8,

HI2, HI4, HI5].

Both choices of T have interesting consequences. For example,

assume the linear, constant-coefficient case in which

T = TAT Then (2.2.3) reduces to the canonical form

G = 0 Choose

w

0 = ({ + TAW ) • (u
~ ~~,X _,t

where W = sTw and _ = S-Iu

of uncoupled scalar equations.

analyzed in Chapter 3.

+ AU )d_
_,X

(2.2.5)

Thus (2.2.5) is equivalent to a system

Scalar equations of this form are extensively

Furthermore, the choice T = TA T leads to difference equations which,

under special circumstances, have essential features in common with the

well-known Lax-Wendroff method [R2].

Under the circumstances which led to (2.2.5), choosing T = TA does

not result in the canonical form (2.2.5) unless the weighted residual formu-

lation is generalized to
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£
0

J(_ + _Wx ) _ _ __,• O(U,t + AU x)d_ (2.2.6)

where

2

W =

U =

= (S sT) -I
~ _ (2.2.7)

S W (2.2.8)

u

S U (2.2.9)

Computational experiences with generalizations of formulations of this

type proved cumbersome and unreliable in the nonlinear regime when compared

with (2.2.3) and (2.2.4), and thus were abandoned.

Despite the fact that T = TA does not canonically reduce (2.2.3), it

leads to another optimality property which will be described subsequently

(see §2.5).

If T is taken to be zero then we have the usual Galerkin method which

possesses central-difference like character.
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2.3 Semi-discrete Equations

Spatial discretization of'the weighted residual equation (2.2.3) via

finite elements leads to the following semi-discrete system of ordinary

differential equations:

M v + C v = F (2.3.1)

where M = M(v, t) is the generalized "mass" matrix, C = C(v, t) is the

generalized convection matrix, F = F(v , t) is the force vector, v is

the vector of (unknown) nodal values of U , and a superposed dot denotes

time differentiation. The initial-value problem for (2.3.1) consists of

finding a function v = v(t) satisfying (2.3.1) and the initial condition

v(0) = v 0 (2.3.2)

where [0 is determined from (2.1.i1).

The arrays in (2.3.1) are assembled from element contributions:

nez

M : A (me )

~ e=l

(2.3.3)

e [m_]m = ~

e = / TT) Nb d_mab (N a I + Na,x ~

_e

(2.3.4)

(2.3.5)

ne_

-- A (ce)

e=l

(2.3.6)

e e

c~ = [Cab] (2.3.7)



ll

eCab = (N a _I + Na,x TT)A_~ Nb,x cLq (2.3.8)

ne£

F = A (fe)

e=l
(2.3.9)

fe = {fe} (2.3.10)

n

_/e e_ e

e e
fe = N a G d_ - (m b _b + c_a ~ ~ab g-b )

b=l

(2.3 .ii)

where A represents the finite element assembly operator; a and b are

(local) element node numbers; 1 < a , b < n where n is the number
-- -- en en

of nodes for the element under consideration; N is the element shape
a

function associated with node a ; I is the m x m identity matrix; and

e

_b is a vector which contains the boundary condition data emanating from

e
(2.1.10). The dimensions of the nodal arrays _L and _ab are m x m ,

and the dimension of ~afe and g_ are m x l



2.4 Transient Algorithms

We consider first a family of one-step implicit methods defined

by

a +
Mn+T ~n+T Cn+ Y Vn+ T = ~Fn+ Y (2.4.1)

v = v + At a (2.4.2)~ n+l ~ n ~ n+_

where

M

~n+T = M(Vn+ Y , in+ Y) (2.4.3)

Cn+y = C(Vn+ Y , tn+ Y) (2.4.4)

F = F (Vn+ Y )~n+y ~ ~ , tn+ Y (2.4.5)

an+ Y (i - y)a +~n Yan+l (2.4.6)

Vn+ Y = (i - Y)v n + _Vn+ 1 (2.4.7)

a = (i - e)a + _a (2.4.8)~n+_ ~n n+l

tn+ Y = (i - Y)tn + Ytn+l (2.4.9)

In the above, At is the time step, n is the step number, and

and y are parameters which determine stability and accuracy properties.

The starting value, _0 ' may be determined from

M 0 a 0 = F 0 - C O v 0 (2.4.10)
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where

_0 = _([0' 0) (2.4.11)

CO = C(v O, 0) (2.4.12)

F 0 = F(v 0, 0) (2.4.13)

If y = 1 the above algorithm reduces to the generalized trapezoidal

method, whereas if y = & , it reduces to the generalized midpoint method.

These methods h_ve been contrasted in [H7, HI6].

A general family of predictor/multi-corrector algorithms, based on

the preceding implicit methods, is implemented as follows:

i. i = 0 ( i is the iteration counter) (2.4.14)

2. v (0)
= v + At(l - _)a n~n+l ~n (2.4.15)

(predictor phase)

(0)
3. a = 0

~n+l ~ (2.4.16)

F(i) (i) a(i) (i) (i)
4. R = ~n+_ - M - (residual force) 4.~ ~n+y ~n+y _n+_ _n+y (2. 17)

5. M* Aa = R ( M* is the "effective mass") (2.4.18)

(i+l) (i) }

6. _n+l = _n+l + _

(i+l) v(i)
7. [n+l = ~n+l + _ At _a

(corrector phase)

(2.4.19)

(2.4.20)

If additional iterations are to be performed, i is replaced by

i + 1 , and calculations resume with step 4. Either a fixed number of
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iterations may be performed or iterating may be continued until R satisfies

a convergence condition. When the iterative phase is completed the solution

at step n + 1

(i+l)

9n+l = _n+l )"

(i+l)
is defined by the last iterates (i.e. v

~n+l = Zn+l
and

At this point n is replaced by n + 1 and cal :ulations

for the next time step may begin.

The properties of the algorithm are strongly influenced by the choice

of the effective mass. There are various possibilities. For example, a

fully implicit procedure may be defined by taking

M* = M (i) + _&t C (i) + _&t H (i)

~ _n+y ~n+y ~n+y
(2.4.21)

where

(i) (i)

tJn+Y = _([n+y ' tn+y) (2.4.22)

C (i) = C(v (i)
~n+_ ~ -n+Y ' tn+y) (2.4.23)

H(i) (i)= H (v
~n+¥ ~ ~n+T ' tn+y)

S

ne£

A (he)

e=l

(2.4.24)

(2.4.25)

he= [heb] (2.4.26)

he f _G
-ab = (N I + N T T) ~ N b d_a ~ a,x ~ (2.4.27)

le

and
_ab has dimensions m x m . In general, this definition of

leads to a non-symmetric band-profile matrix.

M*
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An explicit algorithm may be constructed by taking

(i.e. diagonal) :

M* to be "lumped"

_* = _diag (2.4.28)

There are several schemes for obtaining suitable _diag In the present

work we assume that the diagonal element array is defined by [ZII

where

e
m
_ab

I m e

a

0

I if a = b

if a _ b

(2.4.29)

e:m e

me

(2.4.30)

en

S = f d N2a d_ (2.4.31)

_e a=l

In the present work we confine our attention to the implicit and explicit

schemes defined above. Stability and accuracy analyses are presented in

Chapter 3.

However, there arelother possibilities. Implicit-explicit finite element

mesh partitions [H9, HI0, HI1, HI3] may prove useful, for example. Additionally,

to obtain the stability properties of implicit methods, while eliminating the

equation-solving burden imposed by (2.4.21), approximate factorization schemes

may be employed. We are presently experimenting with element-by-element

factorizations which are very convenient from an implementational standpoint

[H17].
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2.5 Selection of T

Two expressions for T have been employed in the numerical calculations.

One is based upon spatial discretization and the other upon temporal discre-

tization. They are given as follows:

spatial criterion

In this case we assume

T = F _ h/p (2.5.1)

where F is a non-dimensional parameter,

is the spectral radius of A , that is

h is the element length, p

p = max Ixi
L<i<m

(2.5.2)

and the l o (A) 's are the eigenvalues of A Note that (2.5.1) is a local

specification of T in that it depends upon the element lengths and eigen-

values of A which vary from point to point. Rationale for this form of

T is pro_,ided by the following examples:

Examples

1. Consider the scalar model equation

U + I U = 0
,t ,x

(2.5.3)

where X is assumed constant. Raymond and Garder JR1] have shown that

if

(2.5.4)
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then the semi-discrete equations achieve fourth-order phase accuracy.

2. Consider the steady analog of (2.5.3) regularized by a diffusion

term,

_ U = _ U
,x ,xx

(2.5.5)

As g + 0 , the choice

F d = 1/2 (2.5.6)

leads to nodally exact solutions. The general case for the advection-

diffusion equation is described in Hughes-Brooks [B7, B8, HI2, HI4, HI5].

Remarks

i. The preceding optimality conditions, (2.5.4) and (2.5.6), need to

be altered for higher-order elements. For example, in the case of three-

node quadratic elements (2.5.6) should be changed to F _ = 1/4 IN1]

Throughout this work only low-order elements are employed.

2. A weighted residual formulation of a linear, constant-coefficient,

hyperbolic system with G = 0 can be given in which each uncoupled scalar

equation is treated optimally, viz.

0 = (W + F e h sgn A W,x ) • (U + A --Ux)d_
[_ .... ,t ~ -,

(2.5.7)

where W = S T W and _ = S -I U ; cf. (2.2.5). Unfortunately, there does

not appear to be a nonlinear or multidimensional generalization of (2.5.7)

and consequently, we have not explored the subject further.
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temporal criterion

In this case we assume

T = F d At
(2.5.8)

Note that (2.5.8) is a global specification in that At is the same for

all elements. Rationale for this choice is provided by the following

examples.

Example s

1. Assume H = 0

syn_netry of the implicit operator M* (see Eq. 2.4.21). This can be seen

from the definitions of the element contributions to M* :

If T = TA , and F = 1 , then (2.5.8) leads to

e e L /
mab + _At Cab = a N b chQ _I + _At (N a'x Nb AT~ + Na Nb,x A)~d_

_e _e

2 / ~ ~ ( e C e )T+ (dAt) Na, x Nb, x ATA d_ = mba + _At ~ba (2.5.9)

_e

The obvious advantage in this case is the decreased storage and factor-

zation costs. Symmetric element arrays are also advantageous in implicit-

explicit finite element mesh partitions [HI3]. This choice also leads to an

optimality condition in that for a specified residual, R , the increment
~

Aa is optimal with respect to the norm defined by M* Another way of put-

ting this is to say that the increment of U is optimized with respect to

the symmetric bilinear form which generates M* This concept of optimality

is related to the following optimal steady formulation
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f

,,(W, U) = -J (W + T A W,X) " G d_ (2.5.10)

where _(- , ") is a symmetric, bilinear form defined by

f
_(W, U) = Jy-I(w + T A W ) • (U + T A U,x) ClQ (2.5.11)

and A and G are assumed to be independent of U , that is

A = A_(x) (2.5.12)

G = G(x) (2.5.13)

2. The choices ~T = Y AT~ , F = 1 ,. _ = 1/2 , and M*~ = _diag '

leads to an explicit Lax-Wendroff type method. We shall explore this

point further subsequently.

Remark

The factor, F ,

for nonlinear effects.

in (2.5.1) and (2.5.8) has been included to account

It has been our experience that a value of F greater

than one needs to be employed to adequately handle shock-wave phenomena.
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2.6 Finite Difference Equations

The finite difference equations for the preceding algorithms are needed

subsequently for the stability and accuracy analyses and are of interest in

their own right. In explicating the finite difference equations for an inter-

nal node we have made the following assumptions: (i) linear elements are

employed; and (ii) h , A and H are constant; and (iii) G varies linearly

over each element. Furthermore, for notational clarity we have dropped the

superscript i and subscript n + y. The equations are as follows:

implicit case

h + (- T T + _St A - _At T T H)D 1(_ + cmt H)Dr ....

+ _t _ T A D 2 Aa(j) = - _ I D r + T- D 1 a(j)

( ) (h+ - A D 1 - _ A D 2 v(j) 4 -- I D + T D (j)_ ~ 2 ~ r ~ 1
(2.6.1)

where

D v(j) = 2(r v(j-l) + (i - 2r)v(j) + r v(j+l))
r ~ - ~ (2.6.2)

1

D 1 v(j) = _(- v(j-l) + v(j+l) ) (2.6.3)

1

D 2 v(j) = - _(v(j-l) - 2 v(j) + v(j+l)) (2.6.4)

and v(j) = v(xj) is the subvector of v which is associated with node

number j , etc. The value of r is determined by the element quadrature

rule employed. The following are the most important cases:
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r

1/4

1/6

rule

1 - point Gauss

2 - point Gauss (exact)

trapezoidal

explicit case

In the explicit case, the right-hand side of (2.6.1) is the same, but

the left-hand side simplifies to

h Aa(j) (2.6.5)

Remarks

1. It is interesting to observe that even though upwind influence has

been introduced via the weighting function defined by (2.2.4), the resulting

difference equations are centered about node j

2. Assume G = 0 , _ = 1 , T = TA T , Y = _t/2 and the explicit one-

pass (i.e. one-iteration) case, then from (2.4.15), (2.4.16), (2.4.20) and

(2.6.1) we get

~n+l ~ h A D 1 - _-% _. D 2 v n

Eq. (2.6.5) defines the Lax-Wendroff method.
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CHAPTER3

Stability and Accuracy Analysis of Algorithms

for the One-dimensional Linear Hyperbolic Equation

3.1 Development of the Tools for the Analysis

3.1.1 Introduction

Model Problem: Convection Equation

One-dimensional convection of a function

following hyperbolic equation:

U(x,t) is governed by the

U + i U = 0
,t ,x

where 1 is the convection velocity.

(3.1.1)

form is assumed:

An initial condition of the following

ikx
U(x,0) = e

where i = (-i) ½ and k is the wave number.

is an element of the set of Fourier functions.

(3.1.2)

We note that the function e ikx

This is a complete set and

any piecewise regular function in the range of (0,2_) can be represented as an

expansion in this set.

Exact Solution

The exact solution of (3.1.1) and (3.1.2), for constant

forward. Assuming a solution of the form:

I , is straight-

U(x,t) = X(x)T(t) , (3.1.3)



23

leads to :

ikxX(x) = e

_tT(t) = e

\J=- i I k

(3.1.4)

(3.1.5)

(3.1.6)

Wedefine the damping coefficient, _ , and the frequency, _ ,

ponents of the complex parameter _ :

as the com-

-(_,_) = (3.1.7)

Thus:

= 0

_0 = I k

(3.1.8)

(3.1.9)

3.1.2 Finite Element Solution

Semi-Discrete Equation

The Petrov-Galerkin formulations described in chapter 2 leads to the

following semi-discrete equation:

where

M V + C v = 0

= {vj}

v. = U(Xj)]

(3.1.10)

(3 .i.Ii)

(3.1.12)

Here j stands for an interior node, j , and x0 is the coordinate of
3

that node. The matrices M and C were previously defined by (2.3.3)

and (2.3.6).
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For the purpose of analysis, we assume constant 1 and constant mesh

spacing h Further, we assume that the finite element solution, also has

a separable form:

v = X T (3.1.13)

where

T = T(t) (3.1.14)

X~= {Xj} (3.1.15)

Xj = X(xj) (3.1.16)

Consequently, we get the following semi-discrete form:

M X T + C X T = 0 (3.1.17)

The spatial component of the numerical solution is determined by

the nodal interpolation of the imposed initial condition (3.1.2):

ikxj eiqjX. = e = (3.1.18)
3

where the dimensionless wave number,

q=kh, (3.i .19)

is a measure of tile spatial refinement of the numerical method.

•th
The 3 equation of the system of equations of (3.1.17) is

T ), T

+ (X Ol + _X2
" Xj-I 1

Xj . =

Xj+I

(3.1.20)
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where T is the parameter that appeared in section 2.2, and Dr • D1 • D2

are the stencils for node j corresponding to the assembly of the element

level matrices:

+i

NaN b d_

-i

D
_r

(3 .i .21)

+I

NaNb,_

-I

(3.1.22)

+i

f Na, _ Nb, _ d6 _ P2

-i

(3.1.23)

These stencils are directly related to the difference operators given by

(2.6.2)-(2.6.4). Depending on the numerical integration technique used,

they can assume several forms. For example,

D = 211/6, 4/6, 1/6]
~r

(exact integration) (3.1.24)

_i = [-1/2, 0, 1/2] (exact integration) (3.1.25)

_2 = [-1/2• i, -1/2]

L

Further• we define the following array:

(3.1.26)

E = [e-lq• i• e +lq] (3.1.27)

Then

[Xj_ I, X , X ]3 j+l
= [eiq(j -I)

= e iqj E

iqj
, e • e iq(j+l) ]

J

(3 .i .28)

/
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Substituting (3.1.28) into (3.1.20) leads to

h Dr _ DI)E T + (l D 1 + T 12 2 (3.1.29)

Now define the complex scalars

respectively:

M and C corresponding to M and C

M = I(D r 2TI DI) E
2 ~ h _ ~

(3.1.30)

IAt 2Tl

AtC = h (DI + _ D2)E (3.1.31)

where At is the time step Of the time integration algorithm. We define

the following non-dimensional parameters.

hat

CAt - h

2TI

C2T - h

(3.1.32)

(3.1.33)

CAt is called the Courant number. Considering that T has units of

time, we can view C2T as an algorithmic "Courant number" based on

2T If we set C2T = 0 , we obtain the usual Galerkin formulation.

With the definitions of (3.1.30) and (3.1.31), (3.1.29) reduces to

the following ordinary differential equation:

M T + C T = 0 (3.1.34)

Transient Algorithm

Transient algorithms were described in section 2.4.

sentation:

We adopt the repre-

Y = IT, (3.1.3s)
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and let Y denote the approximation of
~n

th
Y at the n -time step.

Given Y , we go through a predictor phase and an iterative phase
~n

to calculate _n+l"

y(0)
In the predictor phase we calculate ~n+l by the following operation:

where

(0)
y = D y
~n+l ~ ~n

is the predictor matrix defined by

(3.1.36)

P

f (i-e) At I
0 0

(3.1.37)

The iterative phase starts with the zeroth-iteration value, y(0)
~n+l '

and continues according to the recurrence rule below:

Given y(i) (i+l)
~n+l solve the following system for _n+l :

_ A_(i) + C L AT(i) = _ (M R _(i) + C R T(i)
) (3 .i .38)

n+l n+l n+l n+l

AT (i) = _&t AT (i)
n+l n+l (3.1.39)

_(i+l) t(i) A_(i)
n+l = Tn+ 1 + (3.1 40)n+l

T(i+l) (i) + AT(i)
n+l = Tn+l n+l (3.1.41)

The superscripts L and R refer to the left and right-hand sides of

(-3.1.38). We reserve the option of having different evaluations for M

and C on different sides, so that we can accomodate all of the algorithms

described in chapter 2.
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The recurrence rule defined above can be expressed as:

v(i+l) ~ y(i)&n+l = J ~n+l (3.1.42)

J is the iteration matrix emanating from the recurrence rule:

J

m

M R
1-e AtcR - _At-

_ C R M R
1 -_----

M M

(3.1.43)

where

= M L + _t C L

Combining the predictor and iterative phases, we have

(3.1.44)

Y = A Y
~n+l ~ ~n

A = jS p

(3.1.45)

(3.1.46)

Here S

that is

is the number of iterations. Exploiting the fact that det P = 0 ,
~

det A = det jS det P = 0 (3.1.47)

we can write

A21 A22

A11 AI2

- U (3.1.48)

Then, from (3.1.45) :

T = D T
n n Tn+l = _ Tn+l (3.1.49)
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Substituting (3.1.49) into (3.1.45) :

Tn+1 = (tr A)Tn~ (3.1.50)

Numerical Frequency and Damping Coefficients

For the temporal component, we assume a solution of the form:

T
n

_ At n
= e (3.1.51)

where _ is the numerical counterpart of the exact v defined by (3.1.6).

From (3.1.50) and (3.1.51):

At
e = tr A (3.1.52)

Now, we need to calculate tr A :

S
S + (i - e)At J21tr A~ = tr(J s~ ~P) = Jll (3.1.53)

S S

where Jll and J21 are components of jS .

way of the Cayley-Hamilton theorem:

jS can be calculated by

_ = a I + b J (3 .i .54)

The coefficients a

of the matrix J :

and b are functions of the eigenvalues, 11 and 12 '

a = (l_ - IS)/(I12 - 12)
(3.1.55)

b = (IllS - 12ls)/(l I - 12 ) (3.1.56)

The eigenvalues are given by
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2

11 = 1 (3.1.57)

1 - (MR + e At cR)/M (3.1.58)

From (3.1.53)-(3.1.58) :

tr A

where

R = (M R + C_ At cR)/M

Q = AtcR/_

(3.1.60)

(3.1.61)

One can note that, from (3.1.30)-(3.1.33), the terms M and AtC

expressed in terms of the dimensionless parameters q , CAt and

can be

C2T :

1

M = _ (D~r - C2T DI)E~~ (3.1.62)

AtC = CAt (_i + C2T _2)_ (3.1.63)

From (3.1.52) and (3.1.59)-(3.1.63), we can express the complex parameter

_At in terms of the dimensionless parameters q , CAt and C2T , that is,

_At = in(tr A) (3.1.64)

For comparison, we need to express vat in terms of the same dimension-

less parameter set. From (3.1.6):

VAt = - ilk At = - i

= - i CAt q

lAt

h
kh

(3.1.65)

By means of (3.1.64) and (3.1.65) we can study the stability and accuracy

of a wide variety of algorithms for solving the convection problem.
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Wedefine the analytical and numerical amplification factors Z and

bv

_)At
= e (3.1.66)

= e_At (3.1.67)
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3.2 Unified Analysis of Alqorit_ms

Introduction

In section 3.1 we developed the tools for stability and accuracy analysis

of a large class of algorithms. The algorithms can be of implicit or explicit

type. Unification of algorithms into one class enables us to perform one

general stability and accuracy analysis for the entire class and then study

individual cases within the framework of this analysis.

For the purpose of analysis, we classify the algorithms we study into

two groups: the implicit types are the base algorithms and the explicit types

are the ones derived from the base algorithms. To each implicit algorithm

defined, we can (at least in principle) associate an explicit algorithm. This

concept was described in section 2.4.

Further, we unify all the algorithms we study into one general Petrov-

Galerkin class. Two main parameters C2T and r (defined in section 2.6)

determine the particular algorithm in this class.

We obtain closed form expressions for the modulus (IZl = e -_At) and the

frequency (w At). These expressions are simple for the implicit and explicit

1-pass algorithms, and somewhat more complex for the explicit 2-pass a] gorithms.

Unconditional-stability proofs can easily be made for the implicit

algorithms; stability limits can be determined for the explicit 1-pass algo-

rithms with the same ease.

Expressions for the exact and numerical frequencies are not in easily

comparable forms. One can expand these expressions in q or CAt and compare

them in series form; this requires extra caution and patience in the algebraic

bookkeeping. Alternately, one can, with a general-purpose program, compute
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the ratio _/w for the desired ranges of C2T , CAt and q

approach is adapted herein.

The latter

3.2.1 Description and Classification of Algorithms

In the following sections we briefly describe the (implicit) algorithms

and place them in the general class.

(Bubnov-) Galerkin Algorithms

In this group we study two Galerkin (C2T = 0) algorithms; we call these

GC and GL

G__CC is a galerkin algorithm with consistent (exactly integrated) mass.

G__LL,on the other hand, has a lumped mass (integrated with nodal trape-

zoidal rule).

The stencils
D and _D1 are~r

_r = 2 [r, 1 - 2r, r] (3.2 .i)

91 = [ -h, 0, _ ] (3.2.2)

The parameter r , which was described in section 2.6, is set to 1/6 for

GC and to 0 for GL The form of the stencil _I corresponds to exact

integration and is equivalent to central differences.

Petrov-Galerkin Algorithms

We study four Petrov-Galerkin algoritl_ns.

PG(C2T = 2/i/_) and PG(C2T = CAt).

PG(Pade) has weighting function

element shape functions:

They are PG(Pade), PG(C2T = i),

constructed from the following
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_l(_) = 0

N2(_) = 1

(3.2.3)

(3.2.4)

where

e I-i, +i]

is the usual isoparametric coordinate.

~rD and _i by

and

In this case we need to replace

o]

[-1, +1, o] ,

respectively.

This method corresponds to the Pade finite difference approximation (see

[W3]I.

The other methods, that is

(3.2.5)

(3.2.6)

(3.2.7)

PG(C2T = i) [HI5] ,

PG(C2Y = 2/_ ) JR1] and

PG(C2y = CAt--) (described in chapter 2, section 5)

employ (3.1.24), (3.1.25) and (3.1.26), corresponding to exact integration

rules. The name of each algorithm implies the way C2T is chosen.
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3.2.2 /_n_licit Al@orithms

From (3.1.62)-(3.1.63), the scalars M and AtC b e come

C2y

M = 1 - 2r (I - cos q) - i _ sin q (3.2.8)

AtC = CAtC2T (i - cos q) + i CAt sin q (3.2.9)

The stencils of the Pade approximation, (3.2.6) and (3.2.7), lead to,

M - 2 (i + e _q) (3.2.10)

AtC = CAt (i - e -iq) (3.2.11)

Remark: The same expressions can also be obtained by setting r = 1/4

and C2T = 1 in (3.2.8)-(3.2.9). Therefore, for the purpose of analysis,

we can include the PG(Pade) algorithm in the two-parameter (C2T, r) family

of Galerkin/Petrov-Galerkin algorithms.

For the implicit class, (3.1.52), (3.1.59) and (3.1.67) reduce to the

following expression for the numerical amplification factor:

where Q is given by (3.1.61).

= 1 - Q (3.2.12)

Frequency Analysis

The following expression for _ At is found:

CAt,, W(G + C 2 V/2)/
tan(_ At)

2T

[ (G + ,'_CAtC2yV ) (G - (i - C_)CAtC2TV) +

(H + _ CAt W)(H - (i - a)CAt W) ] (3.2.13)
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where

V = 1 - cos q (3.2.14)

W = sin q (3.2.15)

G = 1 - 2 r V (3.2.16)

H = - C2T W/2 (3.2.17)

Eq. (3.2.13) is a general expression for any combination of r , C2T and

For example, for the trapezoidal rule (_ = ½) the expression reduces to

tan (_ At) 2 V/2) /
= CAt W(G + C2T

[G 2 1
- (_ CAtC2y V) 2

H 2 1
- (_ cat w) 2]

+

(3.2.18)

Further, if we have a Galerkin algorithm
(C2T = 0), then (3.2.18) becomes:

tan(_ _t) = CAt W G/[G 2 - (½ CA t W) 2]

Lumping the mass term reduces this expression to:

(3.2.19)

tan(w At) = CAt W / [i - (½ CAt W) 2] (3.2.20)

Modulus/Stability Analysis

The following inequality needs to be satisfied for the stability of an

algorithm:

I 12 ! 1 (3.2.21)

This inequality translates to:

- (i - 4 r)C2T V - (2 _ - i)(C 22Y V + (2 - V) ) _< 0 (3.2.22)
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As we can easily observe, for _ > _ ,

are unconditionally stable, provided that

GC(C2y= 0, r = 1/6) , GL(C2T= 0, r = 0)

have no modulus error, that is, IzI = 1

all the algorithms considered

r < 1/4 In particular,

and PG(Pad_) (C2y = i, r = 1/4)

3.2.3 Explicit Algorithms

For explicit algorithms, the scalar quantities M R , AtC R and M are:

M R = G + i H (3.2.23)

AtC R = CAtC2y V + i CAt W (3.2.24)

M = 1 _ (3.2.25)

Explicit 1-Pass Algorithms

For 1-pass algorithms, the numerical amplification factor takes the form

= 1 - AtC R (3.2.26)

that is

= (i - CAtC2TV , - CAtW ) (3.2.27)

For the frequency analysis, we get a relatively simple expression:

tan(w At) CAt

W

= (3.2.28)
1 - CAtC2.rW

Clearly, for 1-pass algorithms, r and _ have no effect.

For modulus/stability analysis, the following inequality is considered:

IZl 2 = (i - CAtC2yV) 2 + (CAt W) 2 _< 1 (3.2.23)
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Utilizing the identity W 2 = 2V - V 2 this condition can be written as:
t

)2 > 0
2 (C2T - CAt ) + CAt V(I - C2y _ (3.2.30)

We can further write this inequality in two other forms:

The first form,

1

CAtV
1 - _+ - < < + 1 - + - 2

(CAtV) 2 -- C2y -- C V _ (CAtV)

(3.2.31)

provides us with the stability limits on the algorithmic parameter _2T

The second form,

CA t

2C2T
<

- - -
(3.2.32)

provides the stability limit on the Courant number once we select the

parameter C2T •

Consider the following cases:

If C2T = 0 , then, for the stability condition we get

This implies unconditional unstability.

If we set C2y = 1 , then, the stability condition is

By setting

V- 2 > 0

C2T = CAt '

CAt ! 1

we get the same stability condition: CAt _< 1

Explicit 2-Pass Alqorithms

For the 2-pass algorithms, the numerical amplification factor is

= 1 + £tcR(M R + _ £tC R - 2) (3.2.33)
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_ith this form of Z , the expressions for tan(_ At) and the stability

condition becomerather complicated. Defining the variables

(AI, A2) = Arc R

(B I, B 2) = M R + _ AtC R - 2

(3.2.34)

(3.2.35)

we can, without a_y further algebraic elaboration, write the expressions for

tan(_ At), that is,

tan (_ At)
AIB 2 + A2B 1

1 + AIB 1 - A2B 2
(3.2.36)

and fDr the stability condition

2(AIB 1 - A2B 2) + (A + A ) (B_ + B 2) < 0 (3.2.37)
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3.2.4 Stability and Accuracy Studies

As the algebra of the analysis gets lengthier, especially for the 2-pass

algorithms, we find it more convenient to conduct the analysis numerically

for the desired ranges of the parameters involved.

For the algorithms previously considered _;e utilized a general pur-

pose program to determine the stability and accuracy properties. For each

algorithm, the parameters r and C2T were given. The quantities _/_

and _/_ were computed and plotted for the values of CAt = 0.2, 0.4, 0.6,

0.8, 1.0 and q e ]0, _[

For future reference, we describe the following concepts:

Unit CFL condition [M31: An algorithm satisfies the unit CFL condition

if it produces nodally exact solutions for CAt = 1

Order of accuracy: The behaviors of the _/w and _/_ curves for an

algorithm as q 0 , reveal the order of accuracy of that algorithm. If ei-

ther of these curves has a finite slope as q _ 0 , then the algorithm is first

order accurate. If both curves have slopes approaching zero as q + 0 , then

the algorithm is at least second-order accurate.

The quantity _/_ is called the algorithmic damping ratio (see [H2]) and

is related to the logarithmic decrement _ [H2] via the following expression

where

(t n ) - ~
= in - 2_ (_/_0) (3.2.38)

is the numerical prediction for the dependent variable.

The dimensionless wave number q

Scaling q by 2_ , we get:

is a measure of spatial refinement.
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q, = __ h
2_

which represents the number of elements per wave length.

to limit study to the range q E ]0, _[ For example q = _/2

to having 4 elements for one full wave form.

For the entire graphical analysis e = ½ (trapezoidal).

(3.2.46)

It is reasonable

translates

3.3 Comparison of Algorithms

3.3.1 Implicit Algorithm

Fig. 3.1 shows the frequency ratio (_/_) for the implicit GC, GL

and PG(Pade) algorithms. They have no modulus error, and are second-order

accurate. GC is more accurate than GL

term 2 r(l - cos q) which vanishes for

CFL condition. For finite q , GC and

for finite q • This is due to the

GL. PG(Pade) satisfies the unit

GL become more accurate as CAt

decreases; the opposite is true for PG(Pade).

Fig. 3.2 shows the algorithmic damping ratio (_/_) and the frequency

ratio for the implicit PG(C2T = i) , PG(C2T = 2//15) and PG(C2T = CAt)

algorithms. They are all second-order accurate. As one might expect,

PG(C2y = CAt) behaves like GC as CAt ÷ 0 , like PG(C2T = i) as CAt + 1

and like PS(C2y = 2//I-_) as At + 2/i/_ .
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3.3.2 Explicit 1-Pass Algorithms

Fig. 3.3 shows the results for the explicit 1-pass PG algorithms (GC

and GL are unconditionally unstable; not shown.) PG(Pade) and PG(C2T = i)

are equivalent because, for 1-pass algorithms, there is no dependence on r

In this group, only PG(C2T = CAt) is second-order accurate. This superior-

ity with respect to order-of-accuracy can easily be seen from (3.2.29), which

can be written as:

2
I?.I2 = 1 - CAt V(2(C2T - CAt ) + CAt V(I - C2T)) (3.3.1)

Clearly, the departure of IzI 2

However, if C2T = CAt , then

from unity is first-order in CAt

2
J_12 = i - (cAt v)2(1 - cat)

and thus, the departure of

and V

The algorithms PG(Pade),

unit CFL condition.

The stability limits are

for the other PG algorithms.

from unity is now second-order in CAt

PG(C2T = i) and PG(C2T = CAt )

CAt < 2//i_ for PG(C2T = 2/i/_)

and V

(3.3.2)

satisfy the

and CAt < 1
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3.3.3 Explicit 2-Pass Al@orithms

Fig. 3.4 shows the algorithmic damping ratio and the frequency ratio for

explicit 2-pass PG algorithms. (GC and GL are unconditionally unstable;

not shown.) In this group, all the algorithms are second-order accurate.

PG(Pad_) satisfies the unit CFL condition. All the algorithms are stable

for CAt _ 1 , except for PG(C2T = 2/i/_) which exceeds the stability limit

around CAt = 0.8.
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CHAPTER 4

Numerical Applications in One Dimension

4.1 Introduction

To test the capabilities of our finite element schemes and to estimate

the effects of several algorithmic parameters involved, we experimented with

problems from various classes of one-dimensional hyperbolic systems.

We started with a linear transient problem which had a discontinuous

solution. Then we studied nonlinear transient problems with continuous and

discontinuous solutions; these illustrated the concepts of shock stability

and admissibility. Further, we experimented with a set of nonlinear steady

problems; these resulted in continuous or discontinuous solutions depending

on the way the boundary conditions were specified.

4.2 Numerical Applications in the Linear Transient Case

4.2.1 Propagation of a Small Disturbance in a Gas

Barotropic Compressible Flow Equations

The Euler equations in one dimension are given in appendix I. The mass

and momentum conservation equations can be uncoupled from the energy conserva-

tion equation by assuming that the flow is barotropic, that is:

P = P(0) (pressure) (4.2.1)

Then, the barotropic flow equations can be written as a system of conservation

equations with conservation variables and flux vector defined as:
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U (4.2.2)

~ Pu2 + p
(4.2.3)

where P and u are density and velocity, respectively.

Small Disturbance Equations

We assume that the departures of

and u 0 are very small. Taking u 0

stated as (see [W4]) :

p and u from constant values Q0

to be zero, this assumption can also be

£

P0
<< 1 (4.2.4)

<< 1 (4.2.5)

u

Pv_(P o)
<< 1 (4.2.6)

where p'(p) is the derivative of p(p) with respect to its argument. With

these assumptions, we get the following linearized version of the original

conservation equation system:

P + PO u = 0,t ,x
(4.2.7)

O0 u,t + P'(Po)P,x = 0 (4.2.8)
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Further, by introducing the parameter c ,

2
c = P" (po) (4.2.9)

and the scaling

P* = P/Po- 1 (4.2 .i0)

we get

u* = - u/c (4.2.11)

u,t + A U,x = 0 (4.2.12)

where

and

a

0 -C ]
-C 0

(4.2.13)

(4.2.14)

Clearly, the eigenvalues of A are:

_1,2 = _+ c (4.2.15)

4.2.2 Initial/Boundary-value Problem

The equation system of (4.2.12), together with the following initial/

boundary-value data was studied numerically by Hughes in [H6]:

p(x, 0) )0

_, x _ ]o, 1o[
u(x, 0) = 1

(4.2.16)
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p(O, t) = o 1

u(10, t) = 0

t> 0 (4.2.17)

(We drop the asterisks for notational simplicity.) The parameter c was

chosen to be unity.

4.2.3 Finite Element Solutions

Naming Convention for the T = T A and T = T AT

If we choose to define the operator T according to the criterion

T = _ A , then the resulting formulation would have a second-order term

containing the product ATA . Therefore, we name this criterion the "ATA -

form." If we choose the criterion T = T A T , on the other hand, then the

second-order term would contain the product A 2 Therefore we name this

criterion the "A2-form ''. Thus, in the study of this and all the other

problems, we adopt the following naming convention:

T = T A

T = T A T

ATA

A 2

(4.2.18)

(4.2.19)

This naming convention will also be used for the multi-dimensional cases.

Algorithmic Features

In this problem, both ATA and A_forms result in the same formula-

tion due to the symmetry of the operator A~ . We can also set T~ = ~0 and

obtain the usual Galerkin technique.

The finite element mesh contains 20 elements with uniform mesh spacing
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of .5 . The quadrature rules chosen provide exact integration of the vectors

and matrices involved.

The transient algorithm parameters y and _ were set to be 1.0 and 0.5

respectively. Implicit, explicit 1-pass (designated by El), and explicit 2-pass

(designated by E2) algorithms were tested. Two different time steps, 0.50 and

0.25, were used; these time steps correspond to Courant numbers 1.0 and 0.5,

respectively. For both time steps, we used the temporal criterion for T as

given by (2.5.8). The parameter F was set to unity. The spatial criterion

for T , (2.5.1), would result in the same formulation for both time steps, pro-

vided that we set F = 0.5 when At = 0.25

Results

Fig. 4.1 shows the implicit Galerkin solution for Courant number 1.0

As can be seen, this technique produces spurious oscillations.

Fig. 4.2 shows the solutions produced by the explicit 1-pass Petrov-Galerkin

algorithm with _ = 1.0 and d = 0.5 One would expect the solutions to be

very similar because the explicit 1-pass algorithm is independent of

Slight differences occur because the initial start-up conditions are handled

differently by each algorithm.

Both algorithms satisfy the unit CFL condition defined in chapter 3 yet,

in this problem, d = 0.5 produced results inferior to d = 1.0 due to start-

up conditions. Therefore, for the explicit 1-pass algorithm, when it comes

to a choice between a = 1.0 and _ = 0.5, the former value is preferred.

Fig. 4.3 shows the solutions (for Courant number 1.0) produced by Petrov-
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Galerkin implicit, explicit 1-pass and, explicit 2-pass algorithms. The

explicit 2-pass results are not distinguishable from the implicit results.

This implies that, for this problem, as the number of passes increase, the

explicit algorithm converges quite rapidly to the implicit one.

Fig. 4.4 shows the results for Courant number 0.5 produced by the same

set of algorithms. The implicit and explicit 2-pass algorithms are, again,

indistinguishable. The explicit 1-pass algorithm produces slightly greater

oscillations.
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4.3 Numerical Applications in the Nonlinear Transient Case

4.3.1 Barotropic Compressible Flow

Barotropic compressible flow was defined in section 4.2. The differen-

tial equations need to be satisfied everywhere except at the shock front

where the Rankine-Hugoniot conditions (see [LI, L2, L3]),

have to be satisfied. Here s

and [ ] is the jump operator.

where the superscripts "-"

the shock front, respectively.

s[_] = [_j <4.3.1)

is the propagation speed of the shock front

That is, for any variable Q :

[Q] = Q+ - Q- (4.3.2)

and "+" refer to the left and the right of

For barotropic flow these conditions are:

s[o] = [0 u] (4.3.3)

s[Qu] = [Qu2 + p] (4.3.4)

For shock profile to be stable, the entropy condition also must be

satisfied (see [LI, L2, L3]). The entropy condition is given in the form of

inequalities in terms of s and the eigenvalues of the jacobian matrix A

In the present case, the eigenvalues are

 1,2: u+_(p'iol) 143 >



59

4.3.2 Initial-value Problems

We considered two initial-value problems, both studied by Hughes in

[H6], with the following equation of state:

1 3
p(p) -

2'7 P (4.3.6)

The first problem has the following set of initial data:

p(x, 0) = i + 2H(- x) (4.3.7)

2
u(x, 0) - H(- x)

3
(4.3.8)

where H(x) is the Heaviside step function. This initial data does not

satisfy the jump relations. Therefore, the initial shock profile splits

into a stable shock which propagates to the right and a simple wave which

propagates to the left.

The second problem has the following set of initial data:

p(x, 0) = i + 2H(+ x) (4.3.9)

2

p(x, 0) 3 H(+ x) (4.3.10)

This is the mirror image of the previous data with respect to the point

x = 0 This initial data does not satisfy the entropy condition and there-

fore represents an unstable shock. The result is a rarefaction wave travel-

ing to the right.
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4.3.3 Finite Element Solutions

Algorithmic Features

Both ATA and A2-forms were tested on these problems. We also tried

the Galerkin algorithm for one case only.

The finite element mesh contains 40 elements with a uniform element length

of 1.0.

The transient algorithm parameters y and _ were set to 1.0 and 0.5,

respectively. The time steps were taken to be 0.6 and 0.3 corresponding to

Courant numbers (based on the maximum eigenvalue) 1.0 and 0.5, respectively.

The parameter T was chosen according to the temporal criterion given

by (2.5.8). The parameter F was usually taken to be one, however we

tested cases where it was greater than one.

Results

Fig. 4.5 shows how the Galerkin algorithm performed for _t = 0.6.

We used an implicit 3-iteration scheme. The location of the shock (that is

the shock speed) is in agreement with the exact solution; but there are spu-

rious oscillations behind the shock.

The Petrov-Galerkin algorithms, in general, performed quite well. The

common discrepancies between the numerical and exact solutions were, with

varying magnitudes, overshoots at the shock fronts and oscillations behind !

the simple wave. We tested implicit schemes with i, 2 and 3 iterations

(designated by Ii, I2 and I3) and explicit schemes with i, 2 and 3 passes

(designated by El, E2 and E3). We found that at least 3 iterations were

needed to get the correct shock structures when an implicit scheme is used.

This observation is in agreement with the findings of Baker [B2, B3].
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The element level "mass" matrices and the vectors corresponding to them

were integrated exactly. For the integration of all the other matrices we

tested I, 2 and 3 point Gaussian quadrature rules. Fig. 4.6 shows the com-

parison of the integration rules for At = 0.6 with A2-form and Y chosen

temporally. We conducted the comparison tests on implicit 3-iteration (I3)

and explicit 1-pass (El) algorithms. We observe that the results change

only slightly with the quadrature rule. One can therefore use 1-point qua-

drature for economy reasons without much decrease in accuracy. However, in

the following problems we used the 3-point quadrature rule.

Fig. 4.7 shows the results for At = 0.6; all are in close agreement

with the exact solution. All have, with comparable magnitudes, overshoots

at the shock _ront and oscillations behind the simple wave. We observe that

explicit 2 and 3-pass results are very similar. For the ATA-form the

explicit 1-pass algorithm became unstable; for this form we also tested the

implicit 3-iteration scheme with F = 2 This slightly reduced the oscil-

lations and the magnitude of the overshoot to the left of the shock front.

Fig. 4.8 shows the results for At = 0.3. The solutions are in agree-

ment with the exact solution with slightly more oscillations behind the shock

front compared to the At = 0.6 case. For the A2-form, there was virtually

no difference between explicit 2 and 3-pass algorithms. We also tested the

explicit 2-pass algorithm with F = 2 This algorithm reduced the oscilla-

tions and the magnitude of the overshoot to the left of the shock front.

Fig. 4.9 shows the results for the unstable shock problem. We used

the A2-form with the temporal choice of T ; the time step was 0.6. We

tested the implicit 3-iteration and explicit 2-pass algorithms. Both solu-

tions were in close agreement with the exact solution. The E1 algorithm
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produced slightly more oscillations behind the simple wave. All algorithms

produced good results for this case.

4.4 Numerical Applications in the Nonlinear Steady Case

4.4.1 Isothermal Flow in a Nozzle

We consider the one-dimensional isothermal flow in a nozzle with cross-

sectional area varying along the axis. The governing balance law equations,

provided by Lomax et al. [L7], possesses the following conservation variable,

flux and source vectors:

U = O_ _ (4.4.1)

u

I°u 1A

Ou + @c 2

(4.4.2)

2
where the acoustic speed c

S _- I°1
-Oc A,X

(4.4.3)

is constant and the cross-sectional area is

A = A(x) (4.4.4)

The jacobian matrices are:

A = _J_'/_U

0

-u 2 + c 2

(4.4.5)
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aG/aU

0

-c2A,x/A

O]
0

(4.4.6)

The eigenvalues of A are

_1,2 = u _+ c (4.4.7)

Ass_ning that A(x) is a continuous function of x , the Rankine-

Hugoniot conditions for steady flow reduce to:

[p u] = 0 (4.4.8)

[pu 2 + pc 2 ] = 0 (4.4.9)
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4.4.2 Boundary-value Problem

We studied steady flows suggested by Lomax et al. [L7!.

sectional area and the acoustical speed were given by

The cross-

2

A(x) = 1.0 + (x - 2.5) 0 < x < 5.
12.5 -- --

c =l.0

(4.4.16)

(4.4.17)

The problems considered were:

1. Subsonic inflow - subsonic outflow with no shock.

2. Subsonic inflow - supersonic outflow with no shock.

3. Subsonic inflow - subsonic outflow with shock.

The exact solutions, which can be obtained by the integration of the square

of the Mach number (in this case u2), were provided by Lomax et al. [L7].
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4.4.3 Finite Element Solutions

For the boundary conditions of these problems, we set the values of

the conservation variables as given by the exact solution. The number of

variables to be specified at each boundary depends on the nature of the flow

at that boundary. For supersonic inflow, two variables are set; for sub-

sonic inflow or outflow, one variable; and for supersonic outflow, no varia-

ble is specified.

Considering all the combinations of possible boundary conditions in

terms of conservation variables, we have the following cases for each problem:

For subsonic inflow - subsonic outflow problems:

UIUI:

UIU2:

U2UI:

U2U2:

U 1 at the inflow/U 1 at the outflow

U 1 at the inflow/U 2 at the outflow

U 2 at the inflow/U 1 at the outflow

U 2 at the inflow/U 2 at the outflow

For the subsonic inflow - supersonic outflow problem:

Ul: U 1

U2: U 2

at the inflow

at the outflow

Transient Introduction of the Source Term

In these problems, we introduced the source term into the equation

system in a transient fashion. That is, instead of having the full value of

the term A x right at the beginning, we let it reach its full value gradu-

ally. This is done by taking A as a linear function of time during
,x
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an initial time interval at the end of which A
,x

The numerical A x can be expressed as follows:

reaches its full value.

where nti

interval.

/

(A,x) NUMERICAL = ) n/nti n < nti

A'x I i (4.4.18)1 n >__nti

denotes the number of time steps marking the end of the transition

For the problems solved• nti = i0.

Algorithmic Features

Both ATA and A2-forms were employed. We also tested the Galerkin

algorithm.

The finite element mesh has 40 elements with uniform element length of

0.125. The element level "mass" matrices were integrated exactly; all the

other matrices and vectors were integrated by the 3-point Gaussian quadrature

rule.

We set the transient-algorithm parameters y and _ to unity and

employed implicit schemes with 2 iterations.

The parameter T was chosen according to both spatial and temporal

criteria given by (2.5.1) and (2.5.8), respectively.

The time step for each problem was usually chosen to be ten times the

estimated critical time step for that problem. We define the critical time

step _tCR as the time step for which the Courant number, based on the

maximum spectral radius, is unity. That is

AtCR = h/max D(A) (4.4.19)
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where D(A) is the spectral radius of A

While full convergence to the steady state solutions was attained in

about i00 steps, the 50-step solutions were close enough to the steady state

solutions for practical purposes.

Results for the Subsonic Inflow-Subsonic Outflow Problem With No Shock

For this problem the t_me step was chosen to be 0.735.

We attempted to solve the problem with all possible boundary-condition

types. Of the four types tried, only one, UIU2, failed to give the expected

solution. For each boundary condition type, we tested the usual Galerkin

algorithm, ATA and A2-forms, the latter two with temporal choice of T

For the type UIUI we also tested the A2-form with spatial choice of T

In all cases F = 1

For each boundary-condition type, there was no difference between the

solutions produced by different algorithms. However, the solutions differed

slightly from one boundary condition type to another. For all types, the

agreement with the exact solution was very close. Fig. 4.10 shows the results.

Results for the Subsonic Inflow-SuDersonic Outflow Problem With No Shock

The time step was chosen to be 0.460.

We solved the problem with both boundary-condition types Ul and U2.

T
each type, we tested the Galerkin algorithm and A A ,

latter two with temporal choice of T

The results are shown in Fig. 4.11.

there was no difference between the solutions produced by different algorithms.

However, the solutions differed slightly from one boundary-condition type to

another. For all types, the numerical solutions were in close agreement with

For

and A2-forms, the

In all cases F = 1

For each boundary-condition type,
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X

i

I
5.0

Steady nozzle flow, subsonic inflow-subsonic outflow, with no shock:

nei = 40, At = 0.735. Comparison of different boundary conditions.

(All methods give essentially the same results.)
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X
Steady nozzle flow, subsonic inflow-supersonic outflow, with no shock:

ne_ = 40, At = 0.460. Comparison of different boundary conditions• (All
methods give essentially the s_me results.)
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the exact solution.

Results for the Subsonic Inflow-Subsonic Outflow Problem With Shock

Unless specified otherwise, the time step was taken to be 0.5.

We also attempted to solve this problem with all possible boundary

condition types. Types UIUI and U2UI gave the expected solutions.

We first describe the solutions obtained for type UIUI:

Fig. 4.12 shows the results for the ATA and A2forms with the temporal

choice of T The solutions are in close agreement with the exact solution

everywhere except at the shock front where the shock front is not very crisp

and shifted to the left by half an element length.

Fig. 4.13 shows the results for the A2-form with spatial choice of T

The parameter F assumes values i, 2, 5 and i0. The solutions are in very

close agreement with the exact solution. There are very slight oscillations

near the shock front for low F For F = 1 and F = 2 the shock front is

across one element only. The error in the shock location is about half an

element length. As F increases, the shock front becomes smeared.

Fig. 4.14 shows the results for the ATA-form with spatial choice of

% The results are similar to that of Fig. 4.13. The only differences are:

a. The shock fronts are slightly less crisp.

b. For F = 1 , we observe oscillations behind the shock front. It

is interesting to note that the oscillations are located in the reqion

between the shock front and the point where the flow velocity reaches the

speed of sound.

UIU2:

Both ATA and A2-forms,

solutions with no shock.

with temporal choice of T , produced smooth
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(1) _2

(2) ATA

×

(S)

(1)

(2)

Figure 4.12

X
Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:

boundary conditions UIUI, global T, ne9 " = 40, _t = 0.500.
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Figure 4.13

X
Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:

boundary conditions UIUI, local T , A 2 , nel = 40, 6t = 0.500.
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Figure 4.14

x
Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:

boundary conditions UlUl, local T , ATA, nel = 40, At = 0.500.
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U2UI:

The time step was taken to be i0, 20, and 40 times the estimated critical

time step. The results for ATA and A 2 forms and temporal choice of T

are very similar and are shown in Figs. 4.15 and 4.16 respectively. The shock

fronts are shifted to the right about one element length.

U2U2:

T A 2
Both A A and with temporal choice of _ , produced smooth sym-

metric solutions. For this case, it was only the Galerkin algorithm which

sensed the shock and located it almost at the exact location, but with severe

oscillations. Fig. 4.17 shows the result produced by the Galerkin algorithm.

Remark

We observed that the location of the shock front was shifted about half

an element length to the left for the boundary condition type UIUI and about

one element length to the right for the boundary condition type U2UI. This

implies that the location of the shock front is dependent to some extent on

the type of boundary conditions specified. In particular, for two boundary

condition types (UIU2 and U2U2) the exact solution was not obtained. Proper

specification of the boundary conditions in problems of this type is a very

important subject which has attracted several researchers (see [B6, MI, YI]),

but does not yet seem to be fully understood.
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(2) At = 20 AtCR
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X

(B)

I
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Figure 4.15

X

Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:

boundary conditions U2UI, global T , A 2, neZ = 40.
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Figure 4.16

X
Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:

boundary conditions U2UI, global T , ATA, ne % = 40.
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Figure 4.17 Steady nozzle flow, subsonic inflow-subsonic outflow, with shock:

boundary conditions U2U2, neZ = 40, _t = 0.500.
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CHAPTER5

Multi-dimensional Hyperbolic Systems

In this chapter the presentation of Chapter 2 is generalized to the

multi-dimensional case.

5.1 Initial/Boundary-value Problem

nsd

Let _ be an open region of IR , where nsd is the number of

space dimensions. The boundary of _ is denoted by F . Spatial coor-

dinates are denoted be x = {xi}.

Consider the following system of m partial differential equations:

U,t + Aj U j + G = 0 (5.1.1)

where

U = U(x, t) (5.1.2)

A._3 = Aj (U,~ x,~ t) 1 _< j _< nsd (5.1.3)

G = C(U, x: ti (5.1.4)

u j = _u/_x (5.1.5)

nsd

A. U = ___ Aj U,j (summation convention) (5.1.6)-3 ~,j ~
j=l

Eq. (5.1.i) is the multi-dimensional analog of (2.1.1).
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Eq. (5.1.1) is said to be hyperbolic if for each

there exists a transformation matrix S such that

nsd

k = _ki} e _

-i

S (kj Aj)S =
(5.1.7)

where is a real, diagonal matrix.

Eq. (5.1.1) is called a balance law if there exist vectorz
•_.j such that

• = _W_./_U 1 < j < nsd_3 ~3 ~ -- -- (5.1.8)

If, in addition to (5.1.8)• we have that G = 0 , (5.1.1) is called a

conservation law.

(5.1.1) is called a symmetric hyperbolic system if

T

A. = A. 1 < j < nsd~3 ~3 -- -- (5.1.8)

The initial condition for (5.1.1) is

U(x• 0) = Uo(x) x e (5.1.9)

and boundary conditions are assumed to take the abstract form (2.1.10).

5.2 Weighted Residual Formulation

In the present case the weighted residual formulation is given by

W • (U t + Aj U,j + G)d_ (5.2 .i)
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where W is typically assumedto have the following form:

_ = W_+ Ti W,i~ (5.2.2)

and

T = Ti A i (no sum) (5 2 3)

or

T
T. = T.A. (no sum) (5.2.4)
_l i ~I

Eqs. (5.2.1) and (5.2.2) are the multi-dimensional analogs of (2.2.3)

and (2.2.4), respectively.

5.3 Semi-discrete Equations

The semi-discrete equations of Section 2.3 remain in force except for

e e
the definitions of the element arrays _ab and _ab which need to be rede-

fined as follows (cf. (2.3.5) and (2.3.8), resp.) :

e /mab = (N a I + Na,i TT)Nb d_ (5.3.1)

_e

e /Cab = (N a I + Na, i TT)AjNb,j d_ (5.3.2)

me
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5.4

case.

h e
~ab

Transient Algorithms

The transient algorithms of Section 2.4 also pertain to the present

The only change necessary is to the definition of the element array

which now takes the form (cf. (2.4.27)):

h e [ T T _

~ab = _e (Na _ + Na'i ~i)_U N b d_ (5.4.1)

5.5 Selection of T.
1

spatial criteria

We consider two multi-dimensional generalizations of the local cri-

terion, (2.5.1) :

T. = F e h/P
1

1 _< i _< nsd (5.5.1)

and

T i = F e hi/P i (no sum)
1 < i <

_ _ nsd
(5.5.2)

where Pi is the spectral radius of _i ' that is,

and

Pi = max llj (_i) I

l<j<m

O = I } P } I = (Pi Pi )

(5.5.3)

(5.5.4)

h = h i Pi/P
(5.5.5)

h -- 2 {{vx {{ 15561
i - i
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Eq. (5.5.6) holds for isoparametric mappings. The gradient operator,

? , is taken in terms of the natural Cartesian coordinates of the bi-

unit nsd-CUbe. For example, (5.5.6) yields the following formulas:

nsd

nsd

= l: h = 2 I_x/_l

= 2 + /

= 2 : hi \_ / _--6--/

1/2

(5.5.7)

(5.5.8)

If other types of finite elements are employed, (5.5.6) needs to be suitably

modified.

temporal criterion

The generalization of the global criterion, (2.5.8), is

T i = F _ At 1 _< i _< nsd (5.5.9)

The examples which follow (2.5.8) concerning symmetric implicit opera-

tors, incremental optimality, and Lax-Wendroff type methods, may be gene-

ralized to the multi-dimension case in straightforward fashion.

Remark

The formulas presented in this section represent esthetic improvements

of ones used previously [B7, B8, HI2, HI4, HI5].
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CHAPTER6

Numerical Applications in Two Dimensions

6.1 Introduction

Problem Geometry and Governinq Equations

We consider the problem of a thin biconvex airfoil placed in a uniform

flow field. The axis of the parabolic arc is aligned with the direction of

the uniform flow (non-lifting case). Fig. 6.1(A) shows the configuration,

where b denotes the ratio of the maximum airfoil thickness to the cord

length. The notations used for flow variables are defined in appendix I.

The subscript " _ " refers to the free stream.

Since we know that the solution will be symmetric with respect to the

x I - axis, we need only consider the half plane x 2 _ 0 as our problem

domain. The parabolic arc bounding the airfoil in this plane is described

by the following expression:

b
x 2 = _- [i - (2 Xl)2] (6.1.1)

The governing equations are the Euler equations described in section I.l

and 1.3. The ratio of the specific heats is

Y = 1.4

(The reader should not be confused by the use of y

rithm parameter of chapter 2 and the present usage.)

The eigenvalues of the coefficient matrices A 1

obtained from (I.3.8) by setting (k I, k 2) = (i, 0)

respectively.

(6.1.2)

for the transient algo-

and _2 can be

and (k I, k 2) = 0.i
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Figure 6.1 Boundary value problem and computational

domain for thin parabolic arc airfoil.
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Boundary Conditions

The free stream parameters are taken to be

P_ = i. , u2_ = 0. , e_ = 1. (6.1.3)

The value of Ul_ will be set according to the following formula, which

depends on the specified value of the free stream mach number M :

Along the

on u 2 :

M 2 Y(Y - l)e_
2

Ul_ M2 (6.1.4)
oo Y(Y - 1)/2 + 1

x I - axis, outside the airfoil, we impose the following condition

u 2 = 0 , x 2 = 0 , IXll > .5 (6.1.5)

On the surface of the airfoil, the velocity vector must be perpendicular to

the surface normal vector. This restriction can be expressed as:

u 2 dx 2

u I dx I
(6.1.6)

Assuming that the airfoil thickness is small enough, such that the uniform

flow field is perturbed only slightly, u I can be approximated in (6.1.6)

by its free stream value (see [L4]) :

u 2 dx 2

Ul_ dx I
(6.1.7)

From (6.1.1) and (6.1.7), the boundary condition on the surface of the airfoil

can then be expressed as

u2 = - 4 b XlU o JXlf ! .5 (6.I.S)
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Nature of the Solution

Once we set the free stream parameters as given by (6.1.3) the nature

of the solution depends on the free stream Mach number and the airfoil

thickness ratio. We fix the thickness ratio to be

b = 0.i0 (6.1.9)

and study the problem for two different values of the free stream Mach

number.

The subcritical value M_ = 0.5

solution, while the supercritical value

a shock around x I = .3

results in a symmetric subsonic

M = 0.84 gives a solution with
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6.2 Computational Domain and Algorithmic Features

Finite Element Mesh and Boundary Conditions

The computational domain is shown in Fig. 6.1(B).

finite element meshes with different overall sizes:

with L 1 = 3.5, L 2 = 3.0, and the coarse mesh with

mesh has 4N elements in the x2-direction; in the

8N elements across the airfoil and 4N elements each upstream and downstream.

The number of nodal points are: (16N + i) x (4N + i), total, and (8N + i)

on the airfoil. For the coarse mesh, N = 1 , for the medium mesh N = 2 ,

and for the fine mesh N = 4

The meshes are shown in Fig. 6.2; they are symmetric with respect to the

x 2 - axis.

At the left boundary we set p , u I and e to their free stream values.

At the upper boundary, we impose the condition u 2 0 , which can physically

be interpreted as a channel wall. Along the x I - axis we take the boundary

conditions of (6.1.5) and (6.1.8). Imposing the boundary condition of (6.1.8)

along the x I - axis instead of on the airfoil surface is a standard thin-

airfoil approximation.

We utilize three

the medium and fine meshes

L 1 = 2.0, L 2 = 1.5. Each

Xl-direction, there are

Other Algorithmic Features

The integrations of all the element level vectors and matrices were per-

formed by using 2 × 2 Gaussian quadrature rule.

We used the temporal definition of the parameter T. with F = 1 and
1

the A2-form. For the subcritical case we also employed the ATA-form.

The transient algorithm parameters y and _ were both set to unity.
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Implicit methods with one iteration were employed.

The time step for each problem was chosen to be ten times an estimated

critical time step for that problem. Similar to the definition of (4.4.19),

the critical time step is defined here as:

where the subscript

t_le element number.

estimation of _t
CR

AtCR = min(h3/P(Aj) ) (no sum) (6.2.1)
e,3

j is the space dimension and the superscript e is

Since p(Aj) is unknown prior to execution, for the

we use the free stream value of p(Aj)

The steady boundary condition of (6.1.8) was implemented in the same

way as for the nozzle problems of chapter 4. That is, during an initial time

period of certain length, the thickness ratio was taken as a linear function

of time, and at the end of this time period (4 time steps) it reached its

steady-state value.

6.3 Subcritical Case

We compare our results, at free stream Mach number .5, to the analytical

solution of the Cauchy-Riemann equations of the small-perturbation problem.

Expressing the velocity vector as a sum of its free-stream value (Ul , 0)

and a perturbation (Ul, u2)-

(6.3 .i)

the analytical solution (see [L5]) can be written as:
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where

_u - iu 2 = Ul_ b _ 1 - Z in Z- 0[_

Z = x I + i8 x 2 , i = (- i) ½ and

(6.3.2)

B = (I - M ) (6.3.3)

One can observe from (6.3.2) that, along the x I - axis, the boundary

condition for u 2 has been satisfied, while, for Ul , the following

expression is obtained:

!

ul _ 1 4 t 1 - x I inB Ul_ b

xI + 0.51

-Ix I 0 5 /

The pressure coefficient C , defined as
P

P - Poo

Cp - 2

½ D=(Ul)

can be obtained by the following equation (see [L4]) :

(6.3.4)

(6.3.5)

Cp = - 2 _i= + 8 --Ul_ + _ (6.3.6)

If the second order terms are neglected, then we get:

(6.3.7)

Finite Element Solutions

Fig. 6.3 shows the analytical and finite element (medium and coarse

mesh) solutions for subcritical flow at M_ = .5

The time steps for the regular and coarse meshes were set to 0.23 and

0.46, respectively. The solutions a_ the enel of 30 steps were taken as steady

state solutions. For the medium mesh, convergence was achieved in about
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20 steps.

The finite element solutions for A 2 and ATA-forms are shown in

Figs. 6.3(A), (B) and 6.3(C), (D) respectively.

The values of Cp(CP) and Ul(U) are plotted along the airfoil.

The numerical solutions are in close agreement with the analytical

T

solution except for the variable Ul(U) when the A A-form is used. This

2
discrepancy is the main empirical reason we have for favoring the A -form.

When it comes to other variables, such as p and e , similar discrepancies

were observed between the solutions produced by A 2 and ATA-forms.

Remarks

I. The analytical solution predicts infinite, and thus discontinuous,

values at the leading and trailing edges.

2. The computational boundaries did not seem to notably influence the

solution near the airfoil.

3. It is interesting to observe that the results for the coarsest mesh

are in close agreement with the analytical solution.

4. The Galerkin algorithm, on the other hand, produced highly oscilla-

tory results which fed back into the operators of the problem and caused the

results to diverge.

6.4 Supercritical Case

We compare our solutions, at free stream Mach number 0.84, to the finite-

difference solution of Barton [B51 who used the flux vector splitting scheme

of Steger [$2, $3].

The finite difference grid has 97 × 33 points with 75 points along the

airfoil. The boundary condition on the airfoil was taken to be the same as
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ours, as given by (6.1.8). However, at the outer boundaries of the compu-

tational domain, free stream boundary conditions were imposed in Barton's

calculations.

Finite Element Solutions

Fig. 6.4 shows the 800-iteration solution of Barton together with the

finite element solutions for coarse, medium and fine meshes.

The time steps were set to 0.40 for the coarse mesh and to 0.20 for

the medium and fine meshes. For the coarse mesh, the 60-step solution, and

for the medium and fine meshes, the 120-step solutions, were taken as the

steady-states.

We observe that the medium and fine meshes produced very similar results

and they are in agreement with the Barton solution, except for a 3-4% shift

in the location of the shock front. It is known that the way the boundary

conditions are imposed can change the solution considerably [B5, H5, SI].

Because we imposed different boundary conditions at the outer boundaries of

the computational domain, and especially, because we imposed a "wall" bound-

ary condition, rather than a free stream boundary condition at the upper

boundary, we are not surprised that there is some difference between the

results of Barton and ours. This may be explained as follows:

It is known that as the free stream Mach number gets higher, the shock

front moves downstream. When we check our Mach number at the points along

the upper computational boundary, we see that it is not equal to the free

stream Mach number 0.84, but higher (about 0.85-0.86). This is consistent

with the downstream shift of the shock front we obtain.
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The coarse mesh (which is really much too coarse for this type of problem)

did the best that could be expected. The peak point of the shock is about

at the same location found by the medium and fine meshes. The coarse mesh,

however, has only two elements between the peak and the trailing edge, and

this is not enough for a distinct representation of the pressure profile to

the right of the shock front.

The medium and fine finite element meshes, compared with Barton's differ-

ence grid, are also very coarse. Thus we can conclude that, even with rela-

tively crude meshes, the finite element algorithm performed very well on this

problem.
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CHAPTER7

Conclusions

In this work we presented a Petrov-Galerkin finite element algorithm

for first-order hyperbolic equation systems. The in_nediate DurDose was to

solve fluid dynamics problems governed by the conservation-law form of

the compressible Euler equations. Finite element algorithms, inherently,

can be easily applied to problems with arbitrary geometries and boundary con-

ditions. This permits us to utilize the algorithms developed for complicated

domains that finite difference algorithms would, normally, have difficulty

with.

The Petrov-Galerkin algorithm presented here is a generalization to hyper-

bolic systems of the streamline upwind/Petrov-Galerkin algorithm developed by

Hughes and Brooks [B7, B8, HI2, HI4, HI5].

Weconducted an extensive stability and accuracy analysis on a linear

model problem and observed that the algorithms suggested have desirable

properties. Compared to the usual Galerkin algorithms they minimize spurious

oscillations without loss of accuracy.

We tested our algorithms on several problems with governing equations in

conservation law form. Particular attention was paid to the cases with shocks.

In one dimension, numerical experiments were made on linear transient,

nonlinear transient, and nonlinear steBdy problems. We compared the numerical

solutions to analytical ones and observed that they were generally in very

close agreement. The algorithms handled shock fronts very satisfactorily;
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the shock fronts were, for the most part, very crisp, with minimal spurious

oscillations. The usual Galerkin algorithm on the other hand, was ineffec-

tive for problems with discontinuous solutions, while for problems with

smooth solutions it performed satisfactorily.

In two space dimensions, we tested the algorithms on a thin biconvex

airfoil problem. For both subsonic and transonic cases, the algorithms

proved to be successful. For the transonic problem, the location and magni-

tude of the shock front was in good agreement with Barton (Steger flux-vector

splitting) solution [B5, S2, S3]. The subsonic case results were in close

agreement with a linear analytical solutions. The optimal selection

obtained a good solution even with a very coarse mesh. For the transonic

case, the coarse mesh solution was not as good as the medium and fine mesh

solutions, yet, was qualitatively satisfactory.

Overall, the finite element algorithms suggested here performed very well

for problems with smooth and discontinuous solutions. The optimal selection

of the time parameter, T , which appears as a factor in the perturbation part

of the weighting functions, needs further investigation. This needs to be pur-

sued from the standpoint of nonlinearities and shocks which are, of course,

prime concerns in solving the compressible Euler equations.

Webelieve that, with the recent advances in the development of Petrov-

Galerkin algorithms, the finite element method has now becomea viable alter-

native in computational fluid dynamics. However, the efficiency of finite

element algorithms still needs to be improved, especially with respect to

decreasing storage requirements. Recently, an "element-by-element" approach

to the finite element formulation has been proposed by Hughes, Levit and Winger
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(see [HI7]). The preliminary results seemto be promising, particularly

for problems with symmetric operators. Eventually, with the help of such

new concepts, the finite element method can be expected to becomean economi-

cally competitive and powerful analysis tool in the field of computational

fluid dynamics.
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APPENDIXI

The Euler Equations

I.l General Principles

The compressible Navier-Stokes equations, with no source terms, can be

written as a system of conservation equations:

U + _ = 0 1 < j < (I.l.l)
~,t ~3,J ~ ' -- --nsd

where U is the vector of conservation variables and the _[.'s are flux
~ 3

vectors, which are, in general, functions of U and its spatial derivatives:

If we neglect dissipative effects (i.e. conduction, viscosity, etc.)

then the flux vectors are functions of U only:

_. = _. (u)
-3 -3 -

(I.1.3)

and (I.l.l) is called the Euler equations (or the inviscid gas dynamics

equations).

Let us write the Euler equations in a quasi-linear form:

U,t + AjU,j = 0
(I.i.4)

where

A. = __. / _U (I 1.5)
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Consider the linear combination of coefficient matrices:

A = k.A.
~ 3~3

(I.1.6)

where k is a real vector. Without loss of generality, we take k to

be a unit vector. The equation system of (I.i.4) is hyperbolic if for

each k there exists a non-singular transformation matrix S such that

the similarity transformation

-i
S A S = A (I.i.7)
~ .. ~ ~

diagonalizes the matrix A . Here A is a real diagonal matrix. It turns
~

out that, for the Euler equations, this similarity transformation also symme-

trizes the individual coefficient matrices simultaneously. This, in general,

cannot be expected for all hyperbolic systems.

To determine the transformation matrix S we need to go through the
~

usual procedure of finding the eigenvalues and eigenvectors of the matrix A

(see [TI, W2, W3]). We go through this procedure in two phases. The first

phase consists of a transformation into the primitive variables form:

where

AS~] = Q-IAjQ~~ ~ (I.i.9)

= _/_" (I.l.lO)

and

A _ = k.A_ (I.l.ll)
~ 3~3
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Here .... refers to the frame of primitive variables. In this frame, the

coefficient matrices have simpler forms, thus, it is easier to find the

eigenvalues and eigenvectors.

A ,

In the second phase, the operators R and R -I • which diagonalize

are constructed and another transformation is performed:

U * + A"U _ = 0
~,t ~3~,j ~

(I.i.12)

where

AS = R-lAIR = (Q R)-IA.(Q R)
-J ~ -3 .... 3 ~ ~

R = _u'/_u _
~ ~

(I.l .13)

(I .i .14)

and

(I .1.15)

Here " _ " refers to the frame in which A _ is a diagonal matrix. The

transformation matrix of (I.i.7) is, then, equal to the product Q R .

Further, in this last frame, the individual coefficient matrices are symme-

tric:

(A2) T = A_ (I.i.16)
J _3

In the following sections, we define all the arrays involved in

three, two and one space dimensions.

1.2 Three-dimensional Case

The conservation variables vector and flux vectors are

u 1

= o
@

Ju 3

e

(I.2 .i)
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_jPuj°ul + _jl p

= ujpu2 + _j2 p

I uj pu3 _j 3 p
+

_Uj (De + p)

(I.2.2)

where p , u and p are density, velocity and pressure respectively; and

_ij is the Kronecker delta. The total energy per unit mass, e , is the

sumof the internal and kinetic energies per unit mass. An equation of

state relates the pressure to the other variables. That is:

P = P(D, i)

1 , , 2
i = e - lul

(I.2.3)

(I.2.4)

where i is d_e internal energy per unit mass.

then the equation of state becomes:

If we have an ideal gas

p = (y - I) p i (I.2.5)

Here y is the ratio of the specific heats.

The coefficients matrices are:



108

6j "

6jl_u2/2 - ujuI

6ji

6jluI - _jly-ul

j2

6j2ul - 6jiy-u2

6j3

_j3ul - _jl_u3

6j2_u2/2 - uju 2

6j37u2/2 - uju3

(Yu2-" - ye)u,
3

+ u

J

8jlu2 - _j2Y--Ul

6jl% - 6j37uI

_j1_ - _ujuI

6j2u2 - 6j2Y_ 2

+u.
3

_j2u3 - _j3¥--u2

6j2c - _uju2

_Sj3u 2 - 6j2_-u3

6j3u 3 - _j3"Y--u3

+ u.
2

i

_j3 _ - y--uju 3

_j_7

_j27

_j3_

yuj

(I.2.6)



109

where

I

y = y - 1 (I.2.7)

-- 2
C = ye - yu /2 (I.2.8)

Matrices for the transformation to the frame of primitive variables are:

I

1

u I P

u 2 P

u 3

u2/2 Du I Pu 2

B

P

Pu 3

and

Q-I

1

- ul/p

- u2/p

- u3/p

¥u2/2

I/D

m

Yu I

I/o

where a blank slot indicates a zero term.

The pr_nitive variables vector is:

P

u I

i/y

i/p

Y

(I.2.9)

(I .2 .i0)

(I.2.11)
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by

The coefficient matrices in the frame of primitive variables are defined

A
~3

m

U,

3

0
m

6jlP 6j2P _j3 p

U.

3

U .

3

U.

3

2 2 2

6jlPC _j2 De 6j3Pc

0

6jl/P

6j2/P

6j3/P

U .

3

(I.2.12)

where c is the acoustic speed:

2
c = yp/p (I .2.13)

The eigenvalues are:

_i = _2 = _3 = kjuj

k4 = X +c , k = X _ C

1 5 1
(I .2.14)

The matrices for diagonalizing A_ (see [W2, W3]) are

R

-i
R

k I k 2

0 - k 3

k 3 0

- k 2 k 1

0 0

B

i

k I 0

k 2 - k 3

k 3 k 2

0 kll _ 2

o - kl/_q

k 3 p/(/_ c)

k 2 kl//7

- k I k2//_

0 k3//_

o _c/,/_

k 3

0

- k 1

k21/_

- k 2//-_

- k 2

k 1

0

k3//2

- k3//7

p/(/7 c)

- kl//_

- k2//2

- k3//?

pc//2

- kl/C2

- k2/c 2

2

- k3/c

l.i(/_ Oc)

Z/(,/'2 pc)

(I .2.15)

(I.2.16)
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The symmetrized coefficient matrices are [W2, W3]

//
A.
~J

m

J

J

U.

_j2k-3- _j_k-2

6j3k I - 6ilk3 6jak i - _jlk--3

_jlk-=- 602k-l

m

_j2k3 - 6j3k 2

_ _j2k3 --_j3k2

6j3k I - 6jlk3

6jakl.- 6ilk 3

m

6jlk 2 - 6j2k 1

6ilk 2 - 6J2k I

uj ÷ caj

uj - ckj

where

(I .2.17)

_. = ck ./8
J J

(I .2.18)

1.3 Two-dimensional Case

The conservation variables vector and flux vectors are defined by

U = _ 1 (I.3.1)
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.-J

uj P

ujpu I + 6jl P

ujou 2 + 6j2 P

uj (Pe + p)

(I .3.2)

The coefficient matrices are defined by:

A .

~3

6jl

_jl_U2/2 - uju I _jlUl - 6jlY_ 1

+u.
3

_j2_U2/2 - uju 2 _jlU2 - cSj2Y'-Ul

(_u 2 - ye)u,
3

_j2

6j2u I - _jlY--u2

_j2u2 - _j2Yu2

I

! J

+ U,

3

6j2E - yuju 2-- I Yuj6ji£ - yujul i

m

(I.3.3)

The matrices for transformation to the frame of primitive variables are:

B

1

u 1

U

2

u2/2

0

Pu I pu 2 I/Y _

(I.3.4)
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and

-i
Q

i

1

- Ul/p

- u2/p

¥u2/2

l/p

l/p

- yu 2

m

Y

(I.3.5)

The primitive variables vector is

U Iu 1

u 2

P

(I.3.6)

by

The coefficient matrices in the frame of primitive variables are defined

[I.
3

0
B

a

6jlP dj2P 0

u. 6jl/P3

uj 692/P

6jlPC 2 6j2Pc 2 uj _

(I.3.7)

The eigenvalues are:

_i = _2 = kjuj

_3 = _i + c , _4 = _i - c (I.3.8)

The matrices for diagonalizing A"

R

are [W2, W3]:

m

1 o p/(/_c) p/(V_ c)

o k 2 kz/v? - _z/¢2

0 - k 1 k2/V_ - k2/v_2

o o pc/¢_ pc/¢Y

(I.3.9)
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and

R-I

1

0

0

0

0 0 - l/c 2 --

k2 - kl 0

kl//7 k2/v_ I/(/{ Pc

- kl//_ - k2//_2 i/(/2 De)

u

(I.3 .I0)

The symmetrized coefficient matrices are defined by

u. 0 0
3

0 u - 6j3 6J Ik2 2kl

m

- . +ck
0 6jlk 2 6j2k I u3 J

0 6j ik2 - 692kl 0
m

-- i

6jlk 2 - 6j2k I

0

u. - ck.

(I.3.11)

1.4 One-dimensional Case :

The conservation variables vector and flux vector are

t

F = _ uOu + p

u (De + p)

(I .4.1)

(I.4.2)

The coefficient matrix is
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A 0 i 01(y - 3)u2/2 - (y - 3)u

(_u 2 - ye)u ye - 3Tu2/2 yu

(I.4.3)

Matrices for transformation to the frame of primitive variables are

and

Q

Q-I

u2/2 p u 1/T

i= - u/p

u2/2

z/p

- yu y

(1.4.4)

(I.4.5)

The primitive variables vector is

U _ = u

P

The coefficient matrix in the frame of primitive variables is

(I.4.6)

The eigenvalues are:

l I = u

_2 = II + c

A =

m

u P 0

0 u i/P

2
0 pc u

_3 = _i - c

(I .4.7)

(I .4.8)
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The matrices for diagonalizing A" are [W2, W3i:

R

I i P/(/_ c) 0/(/_ i

o klvq - ill7

o 0cl/f pcl_Y

and

-i
R

m

1 0 - 1/c 2

o iI/2 11(/{ _c)

o - i/_ i/(,_ _c)

The diagonalized coefficient matrix is

A _ = A

(I.4.9)

(I .4.10)

(I .4.11)
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APPENDIXII

Stability and Accuracy Analysis of Algorithms for the

One-dimensional Linear Parabolic Equation

II.l Development of the Tools for the Analysis

II.l.1 Introduction

Model Problem: Diffusion Equation

One-dimensional diffusion of a function U(x,t)

following parabolic equation:

is governed by the

U,t - < U,x x = 0

where _ is the diffusion coefficient.

ing form is assumed:

(II.l.l)

An initial condition of the follow-

U(x, 0) = e ikx (II.l.2)

The analysis, arguments, parameters, etc., defined in this appendix are

mostly the same, or very similar to, those of chapter 3; we will just state

state the ones which are different.

Exact Solution

The exact solution is obtained by separation of variables, as was

done in chapter 3. The spatial component of the solution is given by

(II.l.2).

ponent are:

The damping coefficient and the frequency of the temporal com-

- (6, w) = 0 = - (< k 2, 0) (II.l.3)
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II.i.2 Finite Element Solution

Spatial Discretization

For the weighted residual formulation of the problem we use the usual

weighting function which results in the (Bubnov-) Galerkin formulation. That

is

W = W (II.I.4)

The resulting semi-discrete equation

M v + C v = 0 (II.1.5)

is obtained by following a procedure which is very similar to the one we

e e
followed in chapter 2. The element level matrices m and c are defined

differently:

e /mab = NaN b d_ (II.i.6)

_e

c°ab = < Na, xNb, x (II.l.7)

Assuming constant < and mesh spacing h , and going through the

same arguments that we went through in the corresponding parts of chapter 3,

.th
the 3 equation of the system of equations can be written as:

h Dr _ +2 T)
IXj-I 1

"'j+l

0 (II.l.8)

thus:

2
hDr2 E_ T + < _ D 2 E~ T = 0 (II.1.9)
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Wedefine the scalars M and C corresponding to M and C as:

1
- D E2 ~r (II.l .i0)

2 K _t
At C -

h2 (II.l.ll)

The non-dimensional parameter C is defined as:
<

2 < At
C K -

h 2

We note that </h has units of velocity; thus C< can be regarded as

a "diffusion Courant number"

The problem is reduced to solving the following ordinary differential

equation

(II .1.12)

M T + C T = 0
(II.l.13)

Numerical Frequency and Damping Coefficient

Going through the same steps we went through in chapter 3, we obtain

_At
e = tr A = 1 + Q i(l - R) S - ii

~ R ! (II.l.14)

where

R = (MR + _ At cR)/M

Q = At cR/H

(II.l.15)

(II.1.16)

Ate : c<

= M L + _ At C L

(II .1.17)

(II .i.18)
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Then

OAt = in(tr A) (II.l.19)

For comparison, we need to express vat in terms of the samedimen-

sionless parameters; from (II.l.3) :

v_t = - < k2 At = _ _i 2
C< q (II.l.20)

Wedefine the analytical and numerical amplification factors, Z and

, as:

_At (II.l.21)Z = e

?. = e _At (II .I .22)

II.2 Unified AnalYsis of Alqorithms

II.2.1 Introduction

When we study the stability and accuracy of algorithms for the diffu-

sion equation, we classify the algorithms considered as implicit and explicit

types.

This time we do not use Petrov-Galerkin algorithms, therefore, the

type of implicit algorithm will solely depend on the parameter r

(defined in section 2.6) which specifies the way mass terms are integrated.

In the diffusion problem, we observe from (II.l.21) that the exact

amplification factor has no imaginary part and 0 < Z < 1 The numerical am-

plification factor has no imaginary part either. However, we also have to

make sure that the numerical solution is stable.
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Graphically, we compare the exact and numerical amplification factors

and inspect the ratio of the numerical damping coefficient to the exact damp-

ing coefficient for several algorithms.

Obtaining closed form expressions for Z and the damping ratio _

is relatively easy, yet, these expressions are not in a simple form. One can

expand the damping ratio in At and h , and observe the temporal and

spatial accuracies of the algorithms.

The Galerkin algorithms use the integration stencils:

o oD r 2(r, 1-2r, r) (II 2 I)

1 1

D 2 = (- _ , 1 , 2 ) (II.2.2)

Then the scalars M and AtC become:

M = 1 - 2rV (II.2.3)

Ate = C< V (II.2.4)

when

V = 1 - cos q (II.2.5)

II.2.2 Implicit Algorithms

For implicit algorithms, the amplification factor from (II.l.14) is

Z= 1 -Q = 1 -
c<v

1 + v(-2r + _c_)

The stability limits are determined by the condition:

(II .2.6)

IZI ! 1 (II.2.7)
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The inequality Z < 1 dictates that

1 + 2_C > 4r
< --

This condition is automatically satisfied as long as

inequality Z > - 1 requires that:

1r < -- The second--4

(II.2.8)

C V(25 - i) > 4rV - 2 (II.2.9)
K

Since r < 1 from the first inequality, this condition is satisfied as
--4

1

long as _ >_ _ . We summarize the unconditional stability conditions for the

implicit algorithms as:

1 (II.2.10)
r < _ and 5> 1

-- 2

For the accuracy analysis, we can employ asymptotic expansions of the

damping ratio in At and h We expand _/_ in At after setting h = 0

while, for expansion in h we first set At = 0 These expansions are:

h = 0

1

1 + (< k 2 At)(5"-_)

1 52
+ (K k 2 At) 2 (_ + - _)

+ O(At _) (II.2.11)

 t=o= 2Ir

+ 0(h 4) (II.2.12)

Observe that from (II.2.11), e = ½ is the condition for second-order

accuracy is time. From (II.2.12), we see that second-order accuracy in space

1
is automatic, and that the value r = /12 results in fourth-order accuracy.
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II.2.3 Explicit Algorithms

Explicit 1-pass Algorithm

For this algorithm, the amplification factor is:

= 1 - Q = 1 - c v (II.2.13)

The inequality Z _ 1 is automatically satisfied since C< V _ 0 The

second inequality Z > - 1 dictates that C V > 2 The worse case occurs

when V = 2 ; then, C< _ 1 is the stability limit.

For the accuracy analysis, the expansions of the damping ratio in At

and h are:

h = 0 = 1 + 12 (< k2 At) + 7 (< At)

+ 0(At 3 ) (II.2.14)

1 2
= 1 (k h) + 0(h4)" "

At = 0 12
(II .2.15)

Thus the 1-pass algorithm is first-order accurate in time and second-

order accurate in space.

Explicit 2-_ass Alqorithms

The amplification factor for these algorithms is

= 1 + Q(R - 2) = 1 + C V(- 1 + V(- 2r + _C ))
< <

(II.2.16)

The inequality

this leads to

_< 1 requires that C< V(- 1 - 2rV + _C_ V) _< 0 ;

1 + 4r
< (II.2.17)C< _ 2_
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The inequality Z _> - 1 dictates that C< V(l + 2rV - _C< V) - 2 _ 0 ;

1 !
one can show that this is satisfied as long as _ _> _ and r --< 4 Combin-

ing these inequalities with the inequality of (II.2.17), we can state that the

maximum value C< can assume is 2, corresponding to d = ½ and r =

The expansions in At and h are:

(i )h = 0 = 1 + (< k 2 At) _- c

+ (K k 2 At) 2 (7

+ 0 (At3) (II.2.18)

At = 0

Thus, with e =

in the implicit case,

fourth-order.

1 + (k h) 2 (r - l)

+ 0(h4) (II.2.19)

second-order accuracy is achieved in time; and, as

I

r 12 can raise the spatial accuracy from second to

II.3 Summary

Asymptotic expansions, stability limits determined analytically, and

graphical representations of Z (figure II.l) and _/_ (figure II.2) are

utilized for the stability and accuracy analysis of the algorithms considered.

Stability

We observe from Fig. II.1 that for
1

_ = 2'-- C< = 0.2, 0.4. 0.6, 0.8,1.0•

and q _ ]0, z[ , all the algorithms considered had amplification factors

which remained in the interval [-i, +l]; that is, all were stable. This can

also be deduced from the stability limits determined analytically.

For the implicit algorithms (GC and GL) we have stability as long as
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r _ _ and _ _ _ . With _ = _ , both the consistent mass (r = 6)

rithm (GC) and the lumped-mass (r = 0) algorithm (GL) are therefore

stable.

algo-

For the explicit 1-pass algorithm (El), we found that the stability

condition is C _ 1 (independent of r and _) ; Fig. II.l (D) also shows

this clearly. Werecall that C < 1 is the condition for Z not to
K --

drop below - 1.0; in Fig. If.1 (D) we observe that the curve for C< = 1

just touches the stability limit at q = _.

For the explicit 2-pass algorithms (E2), the stability requirements

1 1
are C< _< (i + 4r) , _ _> _ , r _< _ . The consistent mass (r = 61) algo-

l
rithm with _ = -- satisfies the restrictions on the values of _ and r ;

2

5

as a restriction on C< , we get C< _ _ • The lumped mass (r = 0) algo-

l

rithm with d = _ has a restriction C< _< 1.0

Accuracy

For the accuracy of the algorithms, Fig. II.2 provides information for

1
(_ ----

2 '
C = 0.2, 0.4, 0.6, 0.8, 1.0 and points away from q = 0
<

asymptotic expansions on the other hand provide information needed

neighborhood of q = 0

GL

The

in the

We observe from Fig. II.2 that the GC implicit algorithm overdamps while

implicit underdamps. Similarly, GC- E2 overdamps while GL- E2 under-

damping occurs, is about C_ = 0.4

The asymptotic expansions show that all the algorithms considered have

second-order spatial accuracy for
1 1

r _ _ . For r = 1--_ ' the implicit

damps depending on the value of C_ • The crossover point above which over-

damps. The explicit 1-pass algorithm, on the other hand, overdamps or under-
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Figure II.2 Damping Ratios for heat equation algorithms.
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and explicit 2-pass algorithms attain fourth-order accuracy. The algorithms

1 1
considered have first-order temporal accuracy for _ 9 _ . For _ = _ , the

implicit and explicit 2-pass algorithms attain second-order accuracy.



129

APPENDIXIII

Stability and Accuracy Analysis of Algorithms for

One-dimensional Linear Second-order Hyperbolic Equation

III.l Development of the Tools for the Analysis

III.l.1 Introduction

Model Problem: Wave Equation

One-dimensional, undamped wave motion is governed by the following

second-order hyperbolic equation for U(x, t) :

U - < U = 0
,tt ,xx

(III.l.l)

where (K) ½ is the wave-propagation speed.

The initial conditions associated with the problem are assumed to be

of the form:

ikx

U(x, 0) = U 0 e (III.l.2)

U(x, 0) = V0 e ikx (III.l.3)

We note that these could be viewed as Fourier components of a general set of

initial conditions for U and

Exact Solution

For constant propagation speed, assuming a solution of the form

U(x, t) = X(x) T(t) (III.l.4)

leads to the following spatial and temporal components for the function
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U(x, t) :

ikx
X(x) = e (III.l.5)

T(t) = Ale+_t + A2e-_t (III.1.6)

where the constants A 1 and A 2 depend on the constants U 0 and V 0

and

2 k 2v - < (III.l.7)

We define the damping coefficient _ and the frequency w as

(- _, _) = V = i/< k (III.l.8)

The exact solution is seen to have no damping.

III.l.2 Finite Element Solution

Spatial Discretization

For the weighted residual formulation of the problem, we use the usual

weighting functions (W = W) which lead to the (Bubnov-) Galerkin formulation.

The resulting semi-discrete equation

M _ + C v = 0 (III.l.9)

is obtained by following a procedure very similar to the one we followed in

chapter 2 and appendix II. The element level matrices M e and C e are de-

fined as:

f
m e

= ] NaN b d_ (III.l.10)ab
_e

e
c
ab

= f< Na, xNb,x
d_ (III.l.ll)
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Going over a sequence of steps as we did in chapter 3, we end up with

the following ordinary differential equation

M T + CT = 0 (III.l.12)

Here the scalars M and C are

M 1
- 2 Dr E (III.l.13)

_t2C 2K At 2

h2 D 2 E (III.l.14)

For the purpose of analysis, we assume constant

dimensionless parameter C is defined as
<

< and h . The

Here, C
<

h2 - 2 C< = 2

is a Courant number based on the propagation speed /_

(III.1.15)

Time Inteqration

The ordinary differential equation of (III.l.12) can be solved by a

family of time integration schemes described in [HIll. We adopt the repre-

sentation

Y = IT, T, T] (III.l.16)

and let Y denote the approximation to Y at the nth time step.
_n

Given Y , we go through a predictor phase and an iterative phase_n

to calculate v
_n+l

In the predictor phase, we calculate the zeroth iteration value y(0)
' ~n+l '

by the following operation:
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Y(0) -. p y
_n+l ~ ~n

(III.l. 17)

Here P is the predictor matrix defined as:

2]
= 0 1 (i _) At

0 0 0

(III.l.18)

where At is the time step and _ , _ are the Newmark parameters which

control the stability and accuracy of the algorithm.

The iterative phase starts with the zeroth-iteration value y(0)
._n+l

and continues according to the recurrence rule below:

Given y(i)
_n+l solve the following system for ¥(i+i)

~n+l

M L "'(i) + C L (i)
ATn+ 1 _Tn+ 1 - (M Tn+ 1 + C n+l ) (III.l.19)

A_(i) -'(i)
n+l e At= ATn+ 1 (III.l.20)

(i) ..(i)
ATn+ 1 = _ At 2 _Tn+ 1 (III.l.21)

_ (i+l) = _(i) .'"(i)
n+l n+l + ATn+I (III.i.22)

_(i+l) • (i) .. (i)
n+l = Tn+l + ATn+I (III.1.23)

(i+l) (i) + (i)
Tn+ 1 = Tn+ 1 ATn+ 1 (III.i.24)

The superscripts L and R refer to the left and right-hand sides of
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(III.l.19). Wereserve the option of having different evaluations for

M and C on different sides, as in chapter 3.

The recurrence rule defined above can be expressed as:

(i+l) (i)
Yn+l = J Yn+I (III.i.25)

J is the iteration matrix:

where

1
J -- __

M

- 8 At2C R 0

- _ At C R 1

- C R 0

- B At2M R

- _ At M R

- Me

(III.l .26)

.M = M L + _ _t 2 C L (III.1.27)

Combining the predictor and iterative phases:

Yn+l = A~ Yn (III.1.28)

A = jSp
(III.i.29)

Here S is the number of iterations performed in the iterative phase.

Exploiting the fact that det P = 0 ,

C

det A = det J_ det P

we determine d_at at any time step, n+l ,
n+l

of Tn+ 1 and Tn+ 1 That is :

= 0 , (III.l.30)

can be expressed in terms

Tn+l = _i Tn+l + _2 Tn+l (III.l.31)
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We further observe from the structure of the matrix j that the iterates

(i+l) and _(i+l) • (i) This is, of course, a con-
Tn+l n+l have no dependence on Tn+ 1

sequence of the absence of the T term in the ordinary differential equation

of (III.l.12). This observation suggests that we extract the submatrices

and P from the matrices J and P respectively:

J

_ 1 IM_ZecR _ _ _z2MR 1~ _ _ cR M_ MR (III.i.32)

2

[P = (III.l.33)

0 0 0

and rewrite (III.i.28) in a different form:

T(i+l)
n+l

_ (i+l)
n+l

m

J

(i)

Tn+ 1

T(i)

n+l

(III.i.34)

Tn+ 1

..

Tn+l

----S

= J P Y (III.i.35)
~ ~n

Tn+l = Tn + (i - _)At Tn + d At Tn+ 1 (III.i.36)

Eq. (III.1.35) reveals that the relation of (III.1.31) degenerates to

the form :

.o

Tn+ 1 = _ Tn+ 1 (III.1.37)

with U being
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--S
J21

= (III.i.38)--S
Jll

where _-S j__21 and 1 are the components of --S

By adopting the equivalents form of (III.i.35)-(III.i.36), we need only

to calculate the Sth power of a 2 × 2 matrix instead of a 3 × 3 matrix.

Besides, the only difference between the matrix J here and the matrix

of chapter 3 is that the term _t 2 replaces the term _At . With this

J

in mind, by analogy, we write the eigenvalues of J from (3.1.57)-(3.1.58):

11 = 1 (III.i.39)

12 = 1 - (M R + 8 At2cR)/M (III.l.40)

By way of a procedure similar to the one in chapter 3;

--S 1
J =

M

- 8 b At2C R - _ b At2M R

- _ cR _ - _ MR
(III.l.41)

where

= 1 - (i - R)
R

S

(III.1.42)

R = (M R + S At2cR)/M (III .i .43)

It is interesting to note that the only difference between the

matrix _ and its Sth power is the insertion of a _ term which

accounts for the number of iterations. From (III.i.38) :

U
- _c R

- _ b At2C R

(III.i.44)
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and from (III. 1.35)-(III.i.37)

{Tnl}{Tn}• _ a _ •

Tn+ 1 T n

(III.i.45)

with A* given as

a _

?p
Atu[(z - _) + _?p]

]r At

(i +_)r U

(III.i.46)

where

= At2U , P = 1 + (At2/2)(i - 2S)U

and

r = (M - 8 b At2C R)/M (III.i.47)

Numerical Frequency

We are mainly interested in the invariants of the matrix A* which are:
l

tr A* = 2 - E(I + 2_) (III.1.48)

det A* = 1 + E(I - 25) (III.i.49)

where

E
At2C R

2 M
(III.l.50)

The eigenvalues Z1

the quadratic equation

and Z2 of the matrix A* are found by solving

_2 _ tr A*Z + det A* = 0 (III.l.51)
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Assuming a solution of the form:

Tn = Al<'
Olatn

+ A2=V2atn

one can show that the eigenvalues of

and v2_t by

A are related to

_2At01at = Z1 e = Z2e

01At

(III.i.52)

(III.i.53)

The eigenvalues can be used for comparing the numerical

exact v .

Wenow have Zl and

parameters q and C<

sameparameters. From (III.l.8) :

to the

z2 calculated in terms of two dimensionless

Wealso need to express v in terms of the

while

vat = (0, At/< k) = (0, C
< q) (III.1.54)

_1,2 At = in (ZI, 2) (III.I.55)

III.2 Unified Analysis of Al_orithms

III.2.1 Introduction

Stability and accuracy analyses of algorithms for the wave equation

are made for the implicit and explicit cases. Petrov-Galerkin algorithms

are not introduced. The type of implicit algorithm depends only on the r

term (defined in section 2.6).

The Galerkin algorithms utilize the integration stencils

D = 2jr, 1 - 2r, r]
_r

(III .2 .i)

1 1
D 2 = [- _ , i , - _] (III.2.2)
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The scalars M and _t2C then become:

M = 1 - 2rV (III .2.3)

At2C = 2C 2 V
<

(III .2.4)

where

V = 1 - cos q (III.2.5)

For consistency with the exact solution, we need to have

- Ol_t ; that is

O2_t

Z Z = det A* = 1
1 2 ~

This condition is satisfied if _ = 1 .
2

For stability, we require that I?.ll , I?.21 < 1 ;

only when 7.11 = [?.2I = 1 . The eigenvalues Z1 and

the expresslon:

C
~ trA______* A/L_
Zl,2 = 2 + V4

where

(III.2.6)

but this is possible

Z2 are given by

(III.2.7)

tr A*

2
- 1 - E (III .2.8)

42

Clearly -_
< 0 ,

A 2

if and only if

E(E - 2) (III.2.9)

0 < E < 2 (III.2.10)
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This is the stability condition, because, if
A 2

4

Otherwise, we would have either IZll or Iz21

< 0 then j{lr = I{21--i

greater than unity.

III.2.2 Implicit and Explicit 1-pass Algorithms

For an implicit or explicit 1-pass algorithm, the term E is

2
C V
<

E = (III.2.11)

(i - 2rV) + 28C2V
<

In this expression, if we set r = 8 = 0 , we get the value of E for the

explicit 1-pass algorithm (Warning: This applies to (II.2.11) only, but not

the algorithm in general). From the inequality of III.2.10 we determine

the stability limits.

One can show that E _ 0 , if and only if

It is quite clear that if

ditionally.

The inequality E < 2

2 4r - 1
C > (III.2.12)
< -- 48

1

r _< $ , then this condition is satisfied uncon-

implies the following condition:

If 8>!
-- 4 '

2
(4r- c<(4S- 1))v!2

this inequality dictates that:

(III.2.13)

C 2 > 4r - 1
< -- 48 - 1 (III.2.14)

1
Clearly, if r < --

-- 4 ,
this condition is satisfied unconditionally. If not,

then we need to satisfy both (III.2.12) and (III.2.14). One can show

that (III.2.14) implies (III.2.12). Therefore (III.2.14) is the key condition.
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1
If _ < _,

1
we cannot satisfy (III.2.13) unless r _<

this happens, the restriction on C< is given as:

Provided that

C2 < 1 - 4r
< -- 1 - 48

(III.2.15)

1

For the implicit algorithm with r =
and

1

= _ we attain uncon-

ditional stability. For the explicit 1-pass algorithm with

= 0 , the condition of III.2.15 becomes

r = 0 and

2

c< < 1 (III.2.16)

III.2.3 Explicit 2-pass Alqorithms

For 2-pass algorithms

E = C2V(I + 2rV - 28 C2V)
<

(III.2.17)

One can show that E > 0 if and only if

2 < 4r + 1
c< _ 48

(III.2.18)

For E < 2 , the following condition must be met:

2

8 > (i + 4r)
-- 16

(III.2.19)

l 1 and r = 0
With _ = _ , both r =

satisfy this condition. Then

the inequality of (III.2.18) implies that

2 < 5 1
C< __ _ for r =

(III.2.20)

2
< 1 for r = 0 (III.2.21)

C< _
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III.3 Summary

According to the stability guidelines of the previous sections, with

1 1

= _ and S = _ , all the algorithms considered are stable (with no modulus

error) for the ranges of C< e [0, i] and q e [0, _] The accuracy infor-

mation is provided by the graphs of Fig. III.l.

The implicit, lumped mass algorithm (GL) becomes less accurate as C_

increases. The implicit, consistent mass algoribhm (GC), on the other hand,

maximizes its accuracy around C = 0.6
<

The explicit 1-pass algorithm (El) satisfies the unit CFL condition

defined in section 3.2.4. This is as we would expect, because if C< = 1 ;

A* 2tr _--- = 1 - E = 1 - C V
2

= 1 - V (III.3 .i)

A 2

4

2 2
E(E - 2) = C<V(C<V- 2)

= v(v - 2) (III.3.2)

and therefore the eigenvalues are

Zl,2 = (I - v) +_ /v(v - 2)

= cos q + i sin q

+iq
= e-- (III .3.3)

This is the same expression as for the exact solution. The accuracy of

E1 increases as C increases within the stability regime.
<

The explicit 2-pass (E2) version of GC is more accurate than the
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implicit version until about C = 0.8 At this point they almost have

the sameaccuracy, and after that the implicit version is more accurate.

GC-E2 maximizes its accuracy between C = 0.6 and 0.8
<
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